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Abstract
This thesis investigates the intersection of linear cryptanalysis and quantum computing in the context
of symmetric cryptographic schemes. Focusing on the Malviya algorithm[37], which uses quantum
computing to find linear approximations to vectorial Boolean functions, the study examinesmethods to
improve their success probabilities through quantum techniques like amplitude amplification.

The research explores the limitations of the algorithm in handling highly nonlinear functions and in-
troduces measures to gauge function linearity, establishing a link to the corresponding success prob-
abilities. By analyzing various enhancements through quantum methods, this work aims to improve
success rates and compares them against classical approaches.

Overall, this thesis offers a comprehensive exploration of leveraging quantumcomputing for enhancing
success probabilities in linear cryptographic analysis, providing insights into the strengths and limita-
tions of quantum-based linear cryptanalysis.

Abstract (German)
Diese Arbeit untersucht die Kombination von linearer Kryptoanalyse und Quantencomputing im Zu-
sammenhang symmetrischenkryptographischenVerfahren.Die Studie konzentriert sich auf denMalviya-
Algorithmus [37], welcher Quantencomputing verwendet, um lineare Approximationen für vektoriel-
le boolesche Funktionen zu finden, und untersucht Methoden zur Verbesserung ihrer Erfolgswahr-
scheinlichkeiten durch Quantentechniken wie Amplitudenverstärkung.

Die Forschungsarbeit untersucht die Grenzen des Algorithmus bei der Handhabung hochgradig nicht-
linearer Funktionen und führt Maße ein, um die Linearität der Funktionen abzuschätzen und eine
Verbindung zu den entsprechenden Erfolgswahrscheinlichkeiten herzustellen. Durch die Analyse ver-
schiedener Verbesserungen durch Quantenmethoden zielt diese Arbeit darauf ab, die Erfolgsraten des
Malviya-Algorithmus zu verbessern, und vergleicht sie mit klassischen Ansätzen.

Insgesamt bietet diese Arbeit eine umfassende Untersuchung des Einsatzes von Quantencomputern
zurVerbesserung der Erfolgswahrscheinlichkeiten in der linearen kryptographischenAnalyse und gibt
Einblicke in die Stärken und Grenzen der quantenbasierten linearen Kryptoanalyse.

1Both abstracts were shortened or translated with the help of LLMs.
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Chapter 1

Introduction

1.1 Motivation
One of the core concepts of information security, namely data confidentiality, is either solved by stenog-
raphy, i.e. hiding the data or by using cryptography to encrypt the data. The latter can essentially be
divided into two categories, symmetric and asymmetric cryptography. While the security-proofs for
most schemes in either category rely on mathematical assumptions that are thought to be true but are
not proven, asymmetric schemes have the additional challenge of keeping the private key irretrievable
even with access to the closely related public key. It therefor has to rely on arguably more complex
mathematical problems than symmetric cryptography. One such problem, which is well established
and not been broken by classical computing yet, is the hidden subgroup problem. The common asym-
metric cryptography schemes are therefor based on some variation of the hidden subgroup problem,
e.g. the discrete logarithm, the elliptic curve discrete logarithm or prime factorization problems. These
would specifically be RSA (prime factorization) or ECDSA (elliptic curve discrete logarithm). By only
using classic computers these problems are practically (in polynomial time) intractable and therefor
these schemes are considered safe against them, the advancement of quantum computers poses a new
threat as these problems are now considered to be solvable in quantum polynomial time1. This is
mainly due to the fact that the quantum Fourier transform can be leveraged to solve the hidden sub-
group problem for abelian groups with exponential speedup. This was researched by Shor in 1994
[47] and is now considered to be one of the most important results in quantum computing, mainly for
aforementioned reasons.

With the security of themost asymmetric cryptography schemes put at risk by quantum computing, the
security of symmetric cryptography schemes is still considered to be safewith the currently best generic
approach being circumvented by doubling the key and block sizes. This is caused by the quadratic
speedup through Grover’s algorithm [26], but more on that in section 5.1.

This sub-exponential speedup is not enough to break the security of symmetric cryptography schemes
per se, so other approaches are needed. One of these approaches in classical computing was pioneered
by Matsui to break the then standard DES encryption scheme [39]. His approach is now known as lin-
ear cryptanalysis and is based on the fact that most vectorial Boolean functions can be approximated
to some degree by a linear function. For every linear approximation we gain one bit of information,
bisecting the search space for following brute-forcing possible used cipher-texts and or keys. The chal-
lenge therein is finding the linear approximations themselves (compare problem [39, P1]), which Mat-
sui did by examining the inner structure of the DES encryption scheme and combining linearities in
their S-Boxes. This approach is not necessarily applicable to other encryption schemes, as they are
not generally based on S-Boxes. But it is still important for cryptanalysis to research the linearities of
cryptographic functions as those would be a weak point in the security of the scheme.

Finding those global approximations however is a computationally hard problem, as the number of
1See appendix C.2
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possible linear approximations grows exponentially with the number of bits. But with the advent of
larger quantum computers there might be a way to use quantum algorithms to solve this problem.
One such approach is the one by Malviya and Tiwari [37], which we will discuss in more detail in this
thesis. Their solution runs with a constant amount of quantum queries, which is a huge improvement
over the classical approach of checking every possible pair of input and output for the function under
analysis.

However, their approach seems to have a very bad success probability, so the main contribution of this
thesis is to model the success probabilities of their algorithm, improve it using amplitude amplification
and comparing it to the classical approach.

1.2 Outline
After presenting some related work, this thesis first introduces the basics of linear cryptanalysis and
quantum computing in section 3.3 and section 3.4, respectively as those are the main fields this thesis
is based on and are therefor needed as preliminaries to understand the rest of the thesis. These two
fields get combined in a single algorithm byMalviya and Tiwari, which leverages quantum computing
to find linear approximations of vectorial Boolean functions and is therefor the main starting point of
this thesis, this will be discussed and analyzed in section 4.2.

The next part is to define some newmeasures in section 4.3.2 of how linearly approximatible a function
is to then relate this to the success probabilities of applying Malviya algorithm on that function in
section 4.3. As it turns out while modeling the success probabilities, their algorithm does not succeed
very likely if the function is very non-linear. We will therefor improve these probabilities by using
multiple variants of amplitude amplification in chapter 5. The resulting runtimes and probabilities
will finally be compared against each other and the classical approach in chapter 6.
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Chapter 2

Related Work

Themost prominent relatedwork, onwhich this thesis also builds upon, is the alreadymentioned paper
byMalviya et al. [37] which proposes ideas quite similar to some we had, but already published. These
ideas consist primarily of a novel quantum algorithm describing how to find linearities in vectorial
Boolean functions. This algorithmwill be discussed in great detail in section 4.2 so I will not go into the
particulars here. Their paper also already compares to a very trivial classical algorithm but leaves some
unclarities. In addition, they have already run their algorithm on actual 8-qubit quantumhardware but
measured mostly useless results. This had two reasons, first they used an oracle that was larger than
the algorithm itself, result in a very high error rate due to noise, and second the algorithm itself has
a low success probability. They still conclude that their algorithm solves finding linearities efficiently
with exponential speedup, but factoring in the success probabilities it gets more complicated, this will
be discussed in this thesis.

Their paper in turn builds upon the Bernstein-Vazirani Algorithm [12] which, given the induced oracle
𝑈𝑓 (compare section 3.4.1.1) of a linear Boolean function𝑓 ∶ 𝔽𝑛2 ↦ 𝔽2, i.e. 𝑓(𝑥) ∶= ⟨𝑎|𝑥⟩ for some fixed
𝑎 ∈ 𝔽𝑛2 , finds 𝑎 in 𝒪 (1) oracle calls using the circuit shown in fig. 2.1. In some sense this algorithm
is a special case of the algorithm by Malviya et al. as it finds the one correct linear “approximation”
to 𝑓 and uses a similar circuit. If 𝑓 would not be linear this algorithm would measure an 𝑎 with a
probability corresponding to the “goodness” of the approximation 𝑓(𝑥) ≈ ⟨𝑎|𝑥⟩, which is exactly what
the algorithm by Malviya et al. does, which, again, will be analyzed in section 4.2, therefor further
analysis of the Bernstein-Vazirani Algorithm is not necessary for this thesis.

𝑥 ∶ |0⟩⊗𝑛 𝐻⊗𝑛

𝑈𝑓

𝐻⊗𝑛

𝑦 ∶ |0⟩ 𝑋

Figure 2.1: Circuit of the Bernstein-Vazirani Algorithm

Another paper, which also builds upon the Bernstein-Vazirani Algorithm is the paper by Li and Yang
[34]. In contrast to this thesis, it does not find linear approximations but rather linear structures, which
might be closer related to differential cryptanalysis. A linear structure is defined as follows:

Definition 2.0.1 (Linear Structure[34]). Let 𝑓 ∶ 𝔽𝑛2 ↦ 𝔽2, then 𝑎 ∈ 𝔽2 is called a linear structure of 𝑓 iff

𝑓(𝑥 ⊕ 𝑎) ⊕ 𝑓(𝑥) = 𝑓(𝑎) ⊕ 𝑓(0).

They provide an algorithm that finds such linear structures and relate its running time to a property
of 𝑓, called the relative differential uniformity. A similar approach will be used in this thesis with the
non-linearity of 𝑓.
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Finding a linear structure of 𝑓 could also be used to half the search space for linear approximations as
we could disregard every (second) 𝑥′ ∶= 𝑥 ⊕ 𝑎 from our input space.

But this will not be used in this thesis as it increases the complexity of the algorithm a lot without
obvious benefits to runtime or success probability.

Another fundamental paper is the introduction of linear cryptanalysis itself by Matsui [40], this has
nothing to do with quantum computing yet, but as it is the basis for the whole idea of linear cryptanal-
ysis it is still important to mention it here as some ideas and notations originate from this paper, more
details on linear cryptanalysis will be given in section 3.3.

On a similar note, a fundamental quantum building block independent of linear cryptanalysis but used
in this thesis, is the amplitude amplification algorithm by Brassard et al. [14] as a generalization of the
Grover search algorithm [26]. It will be used to amplify the success probability of the algorithm by
Malviya et al. in section 5.2.
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Chapter 3

Preliminaries

3.1 Boolean Functions
Since this thesis is primarily about finding linearities in vectorial Boolean functions, it is important to
define what a Boolean function is and how it can be represented.

Definition 3.1.1. 𝑓 ∶ 𝔽𝑛2 ↦ 𝔽2 is called a Boolean function, 𝑥 ∈ 𝔽𝑛2 is a bitstring while 𝔽2, denoting the
finite field of two elements, e.g. represented by 𝔽2 = {0, 1}, is called a single bit.

Definition 3.1.2. As a generalization of definition 3.1.1 𝑓 ∶ 𝔽𝑛2 ↦ 𝔽𝑚2 is called a vectorial Boolean func-
tion.

In this thesis we will mostly be working with the idea of cryptographic Boolean functions, but the ideas
can be extended to (vectorial) Boolean functions w.l.o.g. as well.

Definition 3.1.3. Cryptographic Boolean functions, i.e. functions that take in a key 𝑘 ∈ 𝔽𝑛𝑘2 and a plain-
text𝑚 ∈ 𝔽𝑛𝑚2 and output a ciphertext 𝑐 ∈ 𝔽𝑛𝑐2 can be defined as

𝑓 ∶ 𝔽𝑛𝑘2 × 𝔽𝑛𝑚2 ↦ 𝔽𝑛𝑐2

Preliminiary 3.1.4. We could also concatenate the two input bitstrings to define our functions as 𝑓′(𝑘 ⧺
𝑚) = 𝑓(𝑘,𝑚) w.l.o.g. 𝑘 ⧺ 𝑚 denotes the concatenation of the two bitstrings 𝑘 and𝑚.

Since this makes it more obvious that key, plaintext and ciphertext can theoretically be sized independently
and everything in this thesis would still apply, I will prefer the concatenated notation. But they could be
used interchangeably with trivial adjustments.

One interesting measure for Boolean functions, which is later used in this thesis to determine how
good a linear approximation is, is the correlation of a Boolean function.

Definition 3.1.5 ([28]). The 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐(𝑓) (or Corr(𝑓)) of a Boolean function 𝑓 ∶ 𝔽𝑛2 ↦ 𝔽2 is given by
how much higher its relative frequency of outputting 0 instead 1 is :

𝑐(𝑓) = 2−𝑛 (#{𝜉 ∈ 𝔽𝑛2 | 𝑓(𝜉) = 0} − #{𝜉 ∈ 𝔽𝑛2 | 𝑓(𝜉) ≠ 0})

Besides that we will also need the Walsh-transform of a Boolean function.

Definition 3.1.6 ([38]). The Walsh-Transform1 is given by:

̂𝜒𝑓 ∶ 𝔽𝑛2 → ℤ; 𝜂 ↦ ∑
𝑥∈𝔽𝑛2

(−1)⟨𝜂,𝑥⟩⊕𝑓(𝑥)

1Some references use the Fourier transform. The Walsh transform of 𝑓 is the same as the Fourier transform of (−1)𝑓 , i.e.
using [−1, 1] instead of [0, 1].
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As it is used in many parts of this thesis the Walsh-transform can be extended into vectorial functions
as follows:

Definition 3.1.7. Given 𝑓 ∈ 𝐹(𝔽𝑛𝑚2 × 𝔽𝑛𝑘2 , 𝔽𝑛𝑐2 ), 2 the vectorial Walsh-Transform is defined as:

̂𝜒𝑓 ∶ 𝔽𝑛2 × 𝔽𝑛2 , 𝔽𝑛2 → ℤ; (𝛼, 𝛾, 𝛽) ↦ ∑
𝑝,𝑘∈𝔽𝑚2

(−1)⟨𝛼⧺𝛾|𝑝⧺𝑘⟩⊕⟨𝛽|𝑔(𝑝,𝑘)⟩ = ̂𝜒⟨𝛽|𝑓⟩(𝛼 ⧺ 𝛾).

If theWalsh-transform is evaluated everywhere, it is called theWalsh-spectrumof that function.

3.1.1 Linearities
Definition 3.1.8. A Boolean function 𝑓 ∶ 𝔽𝑛2 → 𝔽2 is called linear if there exists a vector 𝑣 ∈ 𝔽𝑛2 such that

𝑓(𝑥) = ⟨𝑣|𝑥⟩ =
𝑛

⨁
𝑖=1

𝑣𝑖𝑥𝑖

Similarly a vectorial Boolean function 𝑓 ∶ 𝔽𝑛2 → 𝔽𝑚2 is called linear if there exists a matrix 𝑀 ∈ 𝔽𝑚×𝑛
2

such that 𝑓(𝑥) = 𝑀𝑥. Analogously a cryptographic Boolean function 𝑓 ∶ 𝔽𝑛𝑘2 × 𝔽𝑛𝑚2 → 𝔽𝑛𝑐2 is called
linear if there exists a matrix𝑀 ∈ 𝔽𝑛𝑐×𝑛𝑘+𝑛𝑚2 such that 𝑓(𝑘,𝑚) = 𝑀(𝑘 ⧺ 𝑚).
Definition 3.1.9. In difference to definition 3.1.8, a linearity for a vectorial Boolean function 𝑓 ∶ 𝔽𝑛2 → 𝔽𝑚2
is a pair of vectors (𝑎 ∈ 𝔽𝑛2 , 𝑏 ∈ 𝔽𝑚2 ) such that

⟨𝑓(𝑥)|𝑏⟩ = ⟨𝑎|𝑥⟩

3.2 Linear Approximations
Some pairs of vectors (𝑎, 𝑏) in definition 3.1.9 are not a perfect linearity but come close to it, where the
linearity holds for many inputs of 𝑓 but not for all. These are called linear approximations.

3.2.1 Goodness of linear approximations
In this thesis we often reference the goodness of a linear approximation. In theory there could bemulti-
pleways tomeasure this, butwewill primarily use a special formof correlation for linear approximation
as a measure of goodness here.

The basic definition of correlation is given in definition 3.1.5 and is used to measure how much more
often a Boolean function outputs 0 instead of 1.
With the help of this definition and the following definitions we can define the correlation of a linear
approximation.

Definition 3.2.1. Let ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓, 𝑥) ∶= (⟨𝑚𝑥|𝑥⟩ = ⟨𝑚𝑦|𝑓(𝑥)⟩) = (⟨𝑚𝑥|𝑥⟩ ⊕ 1 ⊕ ⟨𝑚𝑦|𝑓(𝑥)⟩) be the function
that evaluates whether the linear approximation𝑚𝑥 ∈ 𝔽𝑛𝑥2 , 𝑚𝑦 ∈ 𝔽𝑛𝑦2 for 𝑓 ∈ 𝐹(𝔽𝑛𝑥2 , 𝔽𝑛𝑦2 ) holds true at
position 𝑥 ∈ 𝔽𝑛𝑥2
Definition 3.2.1 can be seen as the indicator function for the set of elements that relate according to the
linear relation𝑚𝑥, 𝑚𝑦 for 𝑓.

Definition 3.2.2. Also let 𝑡𝑚𝑥 ,𝑚𝑦 (𝑓) ∶= # {𝑥 ∈ 𝔽𝑛𝑥2 | ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓, 𝑥) = 1} be the number of times the linear
approximation𝑚𝑥, 𝑚𝑦 for 𝑓 holds true.
Similarly, let 𝑡∗𝑚𝑥 ,𝑚𝑦 (𝑓) ∶= # {𝑥 ∈ 𝔽𝑛𝑥2 | ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓, 𝑥) = 0} = |𝔽𝑛𝑥2 | − 𝑡𝑚𝑥 ,𝑚𝑦 (𝑓) be the number of times the
linear approximation𝑚𝑥, 𝑚𝑦 for 𝑓 does not hold true.

This arguably complicated definition of 𝑡 and 𝑡∗ is used tomake the following definition of correlation/
goodness of linear approximation easier to understand.

2As defined via 𝐹(𝔽𝑛2 , 𝔽𝑚2 ).
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Definition 3.2.3. The goodness of a linear approximation (𝑥, 𝑦)with 𝑥 ∈ 𝔽𝑛𝑥2 , 𝑦 ∈ 𝔽𝑛𝑦2 for any𝑓 ∶ 𝔽𝑛𝑥2 ↦
𝔽𝑛𝑦2 is given by

𝑐( ̄𝑡𝑥,𝑦(𝑓)) =
𝑡∗𝑥,𝑦(𝑓) − 𝑡𝑥,𝑦(𝑓)

2𝑛𝑥 .

This aquivalance follows from definition 3.1.5 and definition 3.2.2.

One interesting remark to notice is, that in case of non-vectorial Boolean functions this can simply be
mapped to the Walsh transformed of the function as defined in definition 3.1.6 at the point𝑚𝑥:

Corollary 3.2.3.1. Let 𝑓 ∶ 𝔽𝑛2 ↦ 𝔽2

∀𝑚𝑥 ∈ 𝔽𝑛2 ∶ 𝑐( ̄𝑡𝑚𝑥 ,1(𝑓)) =
1
2𝑛 ∑

𝑥∈𝔽𝑛𝑥2

(−1)⟨𝑚𝑥|𝑥⟩⊕𝑓(𝑥) = 1
2𝑛 ̂𝜒𝑓(𝑚𝑥)

Ananalogous statement canbemade for vectorial Boolean functions, with thehelp of definition 3.1.7.

In addition to linear approximations we might define affine approximations as

⟨𝑓(𝑥)|𝑏⟩ ≈ ⟨𝑎|𝑥⟩ ⊕ 𝑐 for some 𝑐 ∈ 𝔽2 (3.1)

which would flip the sign of the correlation for 𝑐 = 1, but otherwise would not make much of a differ-
ence.

3.2.2 Linear Relations exist in Every Boolean Function
As this thesis is about finding linear approximations for Boolean functions, it is important to show that
this is possible for any Boolean function, which is done in this section.

Theorem 3.2.4. Parsevals theorem states, that for any 𝑓 ∈ 𝐹(𝔽𝑛2 , 𝔽2) [38, p. 60]:

∑
𝜂∈𝔽𝑛2

̂𝜒𝑓(𝜂)2 = 22𝑛

Let 𝑝 be a plaintext and 𝑘 be a symmetric key.
Lemma 3.2.5. Theorem 3.2.4 directly implies, that:

∀𝑓 ∈ 𝐹(𝔽𝑛2 , 𝔽2)∃𝜂 ∈ 𝔽𝑛2 ∶ ̂𝜒𝑓(𝜂) ≠ 0

Theorem 3.2.6. Every cryptographic function has non-zero linear approximation with a non-zero corre-
lation or bias, i.e.:

∀𝑔 ∈ 𝐹(𝔽𝑚2 × 𝔽𝑚2 , 𝔽𝑚2 )∃𝛼, 𝛽, 𝛾 ∈ 𝔽𝑚2 ∶ Corr𝛼⧺𝛾,𝛽(𝑓) ≠ 0, ¬ (𝛼 = 𝛽 = 𝛾 = 0) .

Note, that 𝑛𝑚 = 𝑛𝑘 = 𝑛𝑐 = 𝑚. This is only for readability and can be generalized to any 𝑛𝑚, 𝑛𝑘, 𝑛𝑐.

Proof. Similarly to corollary 3.2.3.1 the following holds in accordance with definition 3.1.7:

Corr𝛼⧺𝛾,𝛽(𝑓) = ∑
𝑝,𝑘∈𝔽𝑚2

(−1)⟨𝛼|𝑝⟩⊕⟨𝛾|𝑘⟩⊕⟨𝛽|𝑔(𝑝,𝑘)⟩ = ̂𝜒𝑔(𝛼 ⧺ 𝛾, 𝛽).

The left-hand side of the equation is trivial. The right-hand side is the result of the following steps:

1. Starting with the Walsh-transformation (as given in definition 3.1.6) we choose 𝑥 ∶= 𝑝 ⧺ 𝑘
(⟹ 𝑚 ∶= 𝑛/2) and 𝑓(𝑥) ∶= ⟨𝛽|𝑔(𝑥)⟩ = ⟨𝛽|𝑔(𝑝, 𝑘)⟩

̂𝜒𝑓 ∶ 𝔽2𝑚2 → ℤ; 𝜂 ↦ ∑
𝑝,𝑘∈𝔽𝑚2

(−1)⟨𝜂|𝑝⧺𝑘⟩⊕⟨𝛽|𝑔(𝑝,𝑘)⟩
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2. Splitting 𝜂 into its first and second𝑚 bits (𝜂 ∶= 𝛼 ⧺ 𝛾) we get:

̂𝜒𝑓 ∶ 𝔽𝑚2 × 𝔽𝑚2 → ℤ; 𝛼, 𝛾 ↦ ∑
𝑝,𝑘∈𝔽𝑚2

(−1)⟨𝛼⧺𝛾|𝑝⧺𝑘⟩⊕⟨𝛽|𝑔(𝑝,𝑘)⟩

3. Since 𝛼, 𝑝, 𝛾, 𝑘 all have the same length and therefor 𝑝 only maps on 𝛼 and 𝑘 only on 𝛾:

̂𝜒𝑓 ∶ 𝔽𝑚2 × 𝔽𝑚2 → ℤ; 𝛼, 𝛾 ↦ ∑
𝑝,𝑘∈𝔽𝑚2

(−1)⟨𝛼|𝑝⟩⊕⟨𝛾|𝑘⟩⊕⟨𝛽|𝑔(𝑝,𝑘)⟩

As a result of that and sincewe only chose a specific 𝑓 defined via 𝑔 and 𝛽 and renamed 𝑥, theorem 3.2.4
still applies and can now be written as:

∀𝑔 ∈ 𝐹(𝔽𝑚2 × 𝔽𝑚2 , 𝔽𝑚2 ), ∀𝛽 ∈ 𝔽𝑚2 ∶ ∑
𝛼,𝛾∈𝔽𝑚2

̂𝜒𝑓(𝛼 ⧺ 𝛾)2 = 24𝑚 (3.2)

Now applying the same procedure as done in lemma 3.2.5 it follows:

∀𝑔 ∈ 𝐹(𝔽𝑚2 × 𝔽𝑚2 , 𝔽𝑚2 ), ∀𝛽 ∈ 𝔽𝑚2 ∃𝛼, 𝛾 ∈ 𝔽𝑚2 ∶𝜒𝑓(𝛼 ⧺ 𝛾) ≠ 0
⟺ ∀𝑔 ∈ 𝐹(𝔽𝑚2 × 𝔽𝑚2 , 𝔽𝑚2 ), ∀𝛽 ∈ 𝔽𝑚2 ∃𝛼, 𝛾 ∈ 𝔽𝑚2 ∶ ∑

𝑝,𝑘∈𝔽𝑚2

(−1)⟨𝛼|𝑝⟩⊕⟨𝛾|𝑘⟩⊕⟨𝛽|𝑔(𝑝⧺𝑘)⟩ ≠ 0

We can now choose any 𝛽 ≠ 0:

∀𝑔 ∈ 𝐹(𝔽𝑚2 × 𝔽𝑚2 , 𝔽𝑚2 )∃𝛼, 𝛽, 𝛾 ∈ 𝔽𝑚2 ∶ ∑
𝑝,𝑘∈𝔽𝑚2

(−1)⟨𝛼|𝑝⟩⊕⟨𝛾|𝑘⟩⊕⟨𝛽|𝑔(𝑝,𝑘)⟩ ≠ 0, 𝛽 ≠ 0

Although this proofs theorem 3.2.6 it is not very informative on what happens with different output
masks 𝛽.
Another result of Parsevals theorem shows the following:

Theorem 3.2.7. ∀𝑓 ∈ 𝐹(𝔽𝑚2 × 𝔽𝑚2 , 𝔽𝑚2 ) it holds, that

∑
𝛼,𝛽,𝛾∈𝔽𝑛2

̂𝜒𝑓(𝛼 ⧺ 𝛾, 𝛽)2 = 25𝑛.

Proof. Direct result of eq. (3.2):

∀𝛽 ∈ 𝔽𝑚2 ∶ ∑
𝛼,𝛾∈𝔽𝑚2

̂𝜒⟨𝛽|𝑔⟩(𝛼 ⧺ 𝛾)2 = 24𝑚 ⇒ ∑
𝛼,𝛽,𝛾∈𝔽𝑚2

̂𝜒⟨𝛽|𝑔⟩(𝛼 ⧺ 𝛾)2 = 25𝑚.

Another alternative proof follows. It relies on the following lemma:

Lemma 3.2.8. ∀𝑓 ∈ 𝐹(𝔽𝑛2 , 𝔽2): 𝑓 is identically distributed, i.e.

∀𝑓 ∈ 𝐹(𝔽𝑛2 , 𝔽2), 𝛼 ∈ 𝔽𝑛2 ∶ ∑
𝑥∈𝔽𝑛2

(−1)⟨𝛼|𝑥⟩ = {0, 𝑖𝑓 𝛼 ≠ 0
2𝑛, 𝑒𝑙𝑠𝑒.

Proof. The case 𝛼 = 0 is trivial: ∑𝑥∈𝔽𝑛2
(−1)0 = 2𝑛.

As ∀𝛼 ≠ 0 ∃𝑠 ∶ ⟨𝛼|𝑠⟩ ≠ 0, for this 𝑠 it holds that ∀𝑥 ∶ ⟨𝛼|𝑥⟩ = 0 ⇔ ⟨𝛼|𝑥 ⊕ 𝑠⟩ = 1.
As the mapping 𝑥 ↦ 𝑥⊕ 𝑠 is a bijection, there are equally many scalar products evaluating to 0 as to 1
and therefor it follows that∑𝑥∈𝔽𝑛2

(−1)⟨𝛼|𝑥⟩ = 0.
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Now, in accordance with definition 3.1.7, we can write:

∑
𝛼,𝛽,𝛾∈𝔽𝑛2

̂𝜒⟨𝛽|𝑓⟩(𝛼 ⧺ 𝛾)2 = ∑
𝛼,𝛽,𝛾∈𝔽𝑛2

( ∑
𝑚,𝑘∈𝔽𝑛2

(−1)⟨𝛼|𝑚⟩⊕⟨𝛽|𝑓(𝑚,𝑘)⟩⊕⟨𝛾|𝑘⟩)
2

= ∑
𝛼,𝛽,𝛾∈𝔽𝑛2

( ∑
𝑚1,𝑘1∈𝔽𝑛2

(−1)⟨𝛼|𝑚⟩1⊕⟨𝛽|𝑓(𝑚1,𝑘1)⟩⊕⟨𝛾|𝑘⟩1 ⋅ ∑
𝑚2,𝑘2∈𝔽𝑛2

(−1)⟨𝛼|𝑚⟩2⊕⟨𝛽|𝑓(𝑚2,𝑘2)⟩⊕⟨𝛾|𝑘⟩2)

= ∑
𝛼,𝛽,𝛾∈𝔽𝑛2

( ∑
𝑚1,𝑘1,𝑚2,𝑘2∈𝔽𝑛2

(−1)⟨𝛼,𝑚1⊕𝑛𝑚2⟩⊕⟨𝛽,𝑓(𝑚1,𝑘1)⊕𝑓(𝑚2,𝑘2)⟩⊕⟨𝛾,𝑘1⊕𝑘2⟩)

= ∑
𝑚1,𝑘1,𝑚2,𝑘2∈𝔽𝑛2

( ∑
𝛼,𝛽,𝛾∈𝔽𝑛2

(−1)⟨𝛼,𝑚1⊕𝑛𝑚2⟩⊕⟨𝛽,𝑓(𝑚1,𝑘1)⊕𝑓(𝑚2,𝑘2)⟩⊕⟨𝛾,𝑘1⊕𝑘2⟩)

= ∑
𝑚1,𝑘1,𝑚2,𝑘2∈𝔽𝑛2

( ∑
𝛼∈𝔽𝑛2

(−1)⟨𝛼,𝑚1⊕𝑚2⟩ ⋅ ∑
𝛽∈𝔽𝑛2

(−1)⟨𝛽,𝑓(𝑚1,𝑘1)⊕𝑛𝑓(𝑚2,𝑘2)⟩ ⋅ ∑
𝛾∈𝔽𝑛2

(−1)⟨𝛾,𝑘1⊕𝑘2⟩)

As (of lemma 3.2.8) the inner sums are all equal to zero, except for the casewhere𝑚1 = 𝑚2, 𝑓(𝑚1, 𝑘1) =
𝑓(𝑚2, 𝑘2) and 𝑘1 = 𝑘2 each, we can simplify the above to:

∑
𝛼,𝛽,𝛾∈𝔽𝑛2

̂𝜒⟨𝛽|𝑓⟩(𝛼 ⧺ 𝛾)2 = ∑
𝑚,𝑘,∈𝔽𝑛2

( ∑
𝛼,𝛽,𝛾∈𝔽𝑛2

(−1)⟨𝛼,0⟩⊕⟨𝛽,0⟩⊕⟨𝛾,0⟩)

= ∑
𝑚,𝑘∈𝔽𝑛2

(2𝑛 ⋅ 2𝑛 ⋅ 2𝑛)

= 25𝑛

Combining theorem 3.2.7 with eq. (3.2) we can see that nomatter how choose the output mask 𝛽, there
will always be a linear approximation with a non-zero bias, and its even rather irrelevant which one
we choose.

3.3 Linear Cryptanalysis
As shown in theorem 3.2.6 there are always linear relations in any Boolean function. Linear cryptanal-
ysis is a method to find and exploit these linearities in cryptographic Boolean functions, also called
ciphers.

As the name suggests it is a type of cryptanalysis, i.e. a (mathematical) method to try and break a
cryptographic system. In this case by analyzing the linear properties of the cipher. The main problem
is to find these linearities in otherwise non-linear functions, i.e. solve problem 3.3.1.

Problem3.3.1. Givena function𝑓 ∶ 𝔽𝑛2 ↦ 𝔽𝑚2 find a linear approximation (𝑎, 𝑏) ≠ 0 such that |𝑐( ̄𝑡𝑎,𝑏(𝑓))|
is maximal or at least large.

First introduced byMatsui in 1993 [40] it was used to break the at its time state-of-the-art Data Encryp-
tion Standard (DES)[39].

DES is a symmetric block cipher, that primarily uses a substitution permutation network (SPN), i.e.
small blocks of permutation and substitution operations connected together. The primary use of the
permutation operations is to change the order of bits during encryption such that every input bit influ-
ences as many different output bits as possible. The substitution operations (from now on S-boxes) on
the other hand do the actual scrambling by changing a sequence of input bits into a complete different
output bit sequence, e.g. through the help of look up tables.
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These S-boxes introduce the non-linearity in the cipher and are therefor essential for confidentiality as
it provides the resistance against linear cryptanalysis. Matsui’s exploit is based on some linear approxi-
matibility in those S-boxes. In particular the 5th S-box of the DES implementation has approximations
with high correlation and is therefor a good starting point for linear cryptanalysis.

The exploit itself is more sophisticated, since it needs to incorporate the permutations as well as multi-
ple rounds and going through the whole SPN. But at its core it is based on finding good linear approxi-
mations of these S-boxes. This is possible since the S-boxes of DES only have 6 input bits and 4 output
bits. So to find which linear approximations have large enough correlation he simply calculated the
correlation of every possible approximation (𝑎 ∈ 𝔽62, 𝑏 ∈ 𝔽42):

𝑐(𝑎,𝑏)(DES-SBOX-5) (3.3)

As this only required 26+4 tries this was easily possible even at his time. Some of these correlationswere
high enough to allow tracing the connections of the S-Box through the whole cipher and extracting one
global linear approximation ⟨𝛼|𝑚⟩ ⊕ ⟨𝛾|𝑘⟩ ⊕ ⟨𝛽|𝑐⟩ ≈ 𝑏 3 with a high correlation.

Using enough such approximations, each giving up to a bit of information about the key, he was able
to extract enough information about the key, to then use an exhaustive search (brute-force) to find the
rest of the key.

Though Matsui needed about 243 Plaintext-Ciphertext pairs for his Chosen Plaintext Attack (CPA) on
DES, and was therefor impractical at the time, it was essentially his work, linear cryptanalysis, that
made DES obsolete. As DES is now easily breakable by a computer in a matter of hours, it was also
replaced by the Advanced Encryption Standard (AES) in 2001.

As opposed to DES, AES was designed with Matsui’s linear attack in mind and is therefore not as
easily breakable by linear cryptanalysis. That is, not by his approach, but maybe it still has some cross-
substitution-box linearities that span over the whole cipher or larger parts of it.

As the whole cipher has many more input and output bits, the number of possible linear approxima-
tions is much larger, so it is not feasible to calculate all of them with a classical computer, like Matsui
did with the S-boxes. In the case of AES there are at least 4 2128+128 possible linear approximations.
More details on how linearities would be found the classical way can be found in section 4.1. But as
this is not feasible, we need to find a way to do this with a quantum computer.

3.4 Quantum Computing
While checking all these possible linear approximations is unfeasible in a classicalmanner, theremight
be some speedup possible using quantum computers. Therefor quantum computing will be briefly in-
troduced in this section, but for a more thorough introduction I would recommend the book by Kaye
et al. [33], Nielsen et al. [42] or the lecture by Homeister [31] from which this section is mostly de-
rived.

In this thesis the gate based quantum computing model is used. It is similar to the classical circuit
model, but with some restrictions and some additional features. Themain difference, causing its supe-
riority over the classical model, is its most basic unit of computation, the qubit instead of the bit.

Definition 3.4.1. A qubit is a quantummechanical system |𝜙⟩ ∈ ℂ2 with two distinguishable basis states,
usually denoted as |0⟩and |1⟩. |𝜙⟩ can be any linear combination of those basis states, i.e. |Ψ⟩ = 𝛼 |0⟩+𝛽 |1⟩
with 𝛼, 𝛽 ∈ ℂ. This is called a superposition of the states |0⟩ and |1⟩, and 𝛼 and 𝛽 are called the amplitudes
of the basis states |0⟩ and |1⟩ respectively. The probability of measuring |Ψ⟩ in the state |0⟩ is |𝛼|2 and in the
state |1⟩ is |𝛽|2 according to the born-rule. The sumof those probabilities is always 1, therefor |𝛼|2+|𝛽|2 = 1.
Similarly to how a computer could operate on data with more than two states (e.g. ternary computers),
the generalization of qubits is called a qudit, it is a quantummechanical system with 𝑑 distinguishable

3This is another notation for eq. 1 in [39].
4AES has multiple variations with different key-sizes, but the block size (input and output length) is 128 bits
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basis states5, usually denoted as |0⟩ ,… , |𝑑 − 1⟩. A special case of a qudit is when 𝑑 = 2𝑛 is a power of
two, in which case it is called a qubit- or quantum-register of length 𝑛.
The basis states of a qubit-register of length 𝑛 are the 2𝑛 states |0⟩𝑛 ,… , |2𝑛 − 1⟩𝑛, where |𝑖⟩𝑛 is the binary
representation of 𝑖. E.g. for 𝑛 = 2 the basis states are |0⟩2 = |00⟩, |1⟩2 = |01⟩, |2⟩2 = |10⟩ and |3⟩2 = |11⟩.
If the qubits are not entangled with each other, the state of the whole register can be described as a
tensor product of the individual qubits, i.e. |Ψ⟩ = |Ψ0⟩ ⊗ |Ψ1⟩ ⊗ ⋯⊗ |Ψ𝑛−1⟩. This is called a product
state. E.g. for 𝑛 = 2 the state |Ψ⟩ = |0⟩ ⊗ (𝛼 |0⟩ + 𝛽 |1⟩) is a product state, but |Ψ⟩ = 𝛼 |00⟩ + 𝛽 |11⟩ is an
entangled state.

A quantum algorithm using the gatemodel can be described as a sequence of unitary operations, called
gates. A gate is a unitary operation that can be applied to (a part of) a quantum register. A gate can
also be applied to a single qubit, in which case it is called a single-qubit-gate.

Definition 3.4.2. A unitary is a linear operator 𝑈 ∶ ℂ𝑑 → ℂ𝑑 that preserves the inner product, i.e.
⟨𝑈Ψ|𝑈Φ⟩ = ⟨Ψ|Φ⟩ for all |Ψ⟩ , |Φ⟩ ∈ ℂ𝑑. Equivalently, a unitary is a matrix 𝑈 ∈ ℂ𝑑×𝑑 that fulfills
𝑈†𝑈 = 𝑈𝑈† = 𝐼.

3.4.1 Input and Output
Similarly to the classical Turingmachine (compare appendix C.1), a quantumalgorithmneeds an input
and produces an output. The input is usually assumed to be |0⟩⊗𝑛, where 𝑛 is the number of qubits in
the input register. But it can also be any other state. The output is usually assumed any state, denoted
|Ψ⟩.

3.4.1.1 Oracles

In addition to the input- and output- “tape”, many quantum algorithms are given an oracle as a pa-
rameter. An oracle is a unitary operation that transforms a state |Ψ⟩ into a state |Ψ′⟩. The oracle is
usually assumed to be a black box, i.e. it is not specified how exactly the state is transformed. This
black box interpretation is interesting, because often the task of a quantum algorithm is to find out a
certain property of an oracle. Such an oracle can then be considered as a kind of meta-parameter of the
algorithm and can therefore be regarded as part of the input. Often the oracle is given as the induced
quantum version of a classical function 𝑓 ∶ 𝔽𝑛𝑥2 ↦ 𝔽𝑛𝑦2 as 𝑈𝑓 ∶ |𝑥, 𝑦⟩ ↦ |𝑥, 𝑦 ⊕ 𝑓(𝑥)⟩ and in case of
𝑓 ∶ 𝔽𝑛2 ↦ 𝔽2 sometimes also as 𝑉 𝑓 ∶ |𝑥⟩ ↦ (−1)𝑓(𝑥) |𝑥⟩.

3.4.1.2 Measurement

A quantum algorithm itself can again be interpreted as a unitary black box and passed as an oracle or
subroutine to a larger algorithm. However, to obtain the output of a quantum algorithm in a classical
form, it must be measured. Often quantum algorithms are designed in such a way that the resulting
state is in such a superposition, that it is sufficient to obtain one of the basis states of this superposition.
In this case ameasurement with respect to the standard basis is sufficient:

|Ψ⟩ =
2𝑛−1
∑
𝑖=0

𝛼𝑖 |𝑖⟩
measurement7−−−−−−→ |𝑖⟩ with probability |𝛼𝑖|2 ; observe 𝑖6.

In some simpler quantum algorithms, even |𝛼𝑖|2 = 1 holds for one 𝑖, i.e. the resulting state is a basis
state up to a complex phase factor 𝑒𝑖𝜑 for 𝜑 ∈ (−𝜋, 𝜋] and the measurement results in 𝑖 with certainty.
Often a more complex measurement is necessary, but as its not needed in this thesis it will be omit-
ted.

5A state, given in ket notation might also be called its wave function.
6𝑖 can be interpreted as both a bit string and a natural number. Accordingly, an index is denoted as 𝑖 ∈ 𝔽𝑛2 , which reflects

the content of the individual qubits, as well as equivalently as 𝑖 ∈ {0,… , 2𝑛 − 1}, which represents the corresponding natural
number represented by the bit string, or the index of the state.
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What is needed however is the fact that while classical circuits can bemapped onto quantum hardware
and therefor classic bits can be copied, this is not the case for general, non-orthogonal quantum bits.
This is called the No-Cloning-Theorem.

Theorem 3.4.3 (No-Cloning-Theorem [31, p. 82]). There is no unitary operation 𝑈 , that fulfills the fol-
lowing equation for every |Ψ⟩:

𝑈 |Ψ⟩ |0⟩ = |Ψ⟩ |Ψ⟩ .

3.4.2 Quantum Complexity
There a many complexity classes appended in appendix C.2, classifying multiple types of problems
by how hard they are to solve. E.g. how long a QTM has to run to solve a problem. Unfortunately,
these classes are very broad, therefor this section introduces some more fine-grained complexity mea-
sures.

3.4.2.1 Oracle-model

Describing the complexity of quantum algorithms through the QTM also misses one major part of
quantum computing: Quantum algorithms are often described to access quantum oracles (as defined
in section 3.4.1.1) as subroutines to, inmost cases, find some hidden information about this oracle. E.g.
in Grover’s database search algorithm, the database is given as a quantum oracle that flips the phase
of the state that represents the solution to the search problem.

An interesting measure therefor is how often an algorithm needs to call/ access that oracle to extract
that hidden information.

In the oracle model every operation and combination of unitaries between two consecutive oracle calls
is considered to be a single unitary operation, or an oracle itself. Therefor any quantum algorithm can
be described as a sequence of oracle calls and unitary operations between them7. So the complexity of
an algorithm can solely be described as the number of calls to the given oracle it requires.

3.4.2.2 Gate-Model

Considering everything between two oracle calls as constant is already quite useful, but an even more
fine-grained measure that also works if no oracles are used is the gate model. In the gate model every
unitary operation is considered to be composed of 𝑘-local gates, and the complexity of an algorithm is
measured by the number of local gates it uses.

Definition 3.4.4. A gate is 𝑘-local if it acts on at most 𝑘 qubits.
Any 𝑘-local gate is congruent to a 𝑘-local unitary operator/ matrix 𝑈 and decomposing a unitary into
𝑘-local gates is also possible but might be exponentially expensive. Therefor in the gate model the
unitaries are already given as a combination 𝑘-local gates. The complexity of any unitary can then be
given as follows:

Definition 3.4.5. The diamond norm ||𝒰||♢ for a quantum channel𝒰 of size 𝑛 is defined as

sup
𝜌
||(𝒰 ⊗ 𝐼)𝜌||1

where 𝜌 is a state on 2𝑛 qubits (given as the density matrix) and || ⋅ ||1 is the trace norm.

Definition 3.4.6. a unitary 𝑈 has 𝜖-complexity of at most 𝑑, denoted 𝐶𝜖(𝑈), if there exists a circuit 𝐶
of depth 𝑑 consisting only of 𝑘-local gates that approximates 𝑈 with error 𝜖: 1

2
||𝒰 − 𝒞||♢ ≤ 𝜖 where

𝒰(𝜌) = 𝑈𝜌𝑈† and 𝒞(𝜌) = 𝐶𝜌𝐶† represent the quantum channels 8 corresponding with these unitary
7The resulting algorithm could be considered as a single oracle itself, but that would not be useful as we are interested in how

often the oracle given as an input is called.
8The unitary channel given by 𝒰(𝜌) = 𝑈𝜌𝑈† applied to the density matrix 𝜌 of a state is congruent the unitary operator

𝒰 applied to the wave function of a state. If the wavefunction is given as |Ψ⟩ the corresponding density matrix would be 𝜌 =
|Ψ⟩ ⟨Ψ|.
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transformations. [13] 9

Building such a circuit is done by chaining gates behind each other using the matrix product and par-
allel to each other using the tensor product10. This is possible because of the following lemma:

Lemma 3.4.7. Let 𝐴,𝐶 ∈ 𝐾𝑚×𝑚 and 𝐵,𝐷 ∈ 𝐾𝑛×𝑛.

(𝐴 ⊗ 𝐵) ⋅ (𝐶 ⊗ 𝐷) = (𝐴 ⋅ 𝐶) ⊗ (𝐵 ⋅ 𝐷) (3.4)

The unitary of the combined gate increases exponentially with the number of qubits it is applied to.
Therefor 𝑘 has to be chosen small, usually 𝑘 = 2 or 𝑘 = 3. It can be differentiated between the circuit
size and the circuit depth as well as the circuit width. The circuit size is the number of gates in the
circuit, the circuit depth is the longest path from input to output and the circuit width is the number
of qubits that are operated on in parallel, visualized in fig. 3.1.

…
…
…
…

⋮ ⋮ ⋮
…

|0⟩
|0⟩
|0⟩
|0⟩

|0⟩

ci
rc
ui
tw

id
th

circuit depth

Figure 3.1: Schematic circuit for a quantum algorithm in the gate-model. The empty boxes represent
arbitrary gates. Created by Valentin Pickel.

9Intuitively the diamond norm gives the inverse of the optimal error (by choosing the optimal input state) of distinguishing
between these two channels with the help of an auxiliary register. More information on this can be learned in [18].

10If a gate𝐺 gets applied to 𝑛 consecutive qudits each, it can be denoted as𝐺⊗𝑛.
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Chapter 4

A Quantum Algorithm for Exposing
Linear Approximations in
Cryptographic Boolean Functions

4.1 Classical approach
As proven with theorem 3.2.6 every Boolean function has linear relations. Finding them is not a trivial
task.

In a classical setting linear cryptanalysis traditionally requires a more manual approach, by looking
at the exact structure of a cipher. In most cases that have been susceptible to linear cryptanalysis, the
cipher is constructed via a SPNwhose only non-linear part are the rather small S-boxes [40, 39]. Finding
linear approximations for these is a rather simple task, as they are small enough to be exhaustively
searched. The linearities are then combined to a linear approximation for the whole cipher as touched
upon in section 3.3.

This approach however misses on potential linear approximations that only emerge by a combination
of multiple S-Boxes and by looking at the whole cipher as one single entity. Doing this however is
exponentially expensive in the size (block size) of the cipher and therefor unfeasible with a reasonably
complex cipher.

The exponential complexity arises not only from the fact that the number of possible linear approxima-
tions for a cipher grows exponentially with the block size of the cipher, but also that calculating how
good a single linear approximation is, is an exponential task in the block size of the cipher itself.

The naive classical algorithm to extract the best possible linear relation from any function 𝑓 ∶ 𝔽𝑛𝑚2 ×
𝔽𝑛𝑘2 ↦ 𝔽𝑛𝑐2 is to simply try all possible linear relations and calculate their “goodness”, this algorithm is
described in algorithm 1.

As the two nested loops make apparent, this algorithm has a runtime of𝒪 (22𝑛𝑘+2𝑛𝑚+𝑛𝑐). This is expo-
nential in the block size of the cipher, but as we will see this is not the best possible runtime.

The asymptotically fastest, albeit more memory intensive and still exponential algorithm, utilizes the
fastWalsh (or Fourier) transform. The fastWalshHadamard transform (FWHT) is very useful, as it can
calculate the full Walsh spectrum of any 𝑓 ∶ 𝔽𝑛2 ↦ 𝔽2 in 𝒪 (𝑛2𝑛), a python implementation is shown
in listing 4.1. There might be a more integrated way of using the fast transform that already includes
the output mask, but that is not known to me and might be a topic for future research. A more direct
approach to use the fast transform is to calculate the Walsh transform for every possible output mask
𝛽 as described in algorithm 2.
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Algorithm 1: Naive classical algorithm to extract the best linear approximation.
input : 𝑓 ∶ 𝔽𝑛𝑚2 × 𝔽𝑛𝑘2 ↦ 𝔽𝑛𝑐2
𝑔⊤ ← 0; /* current best goodness */
𝛼⊤, 𝛽⊤, 𝛾⊤ ← 0⊗𝑛𝑚 , 0⊗𝑛𝑐 , 0⊗𝑛𝑘 ; /* current best linear approximation */
for 𝛼 ∈ 𝔽𝑛𝑚2 , 𝛽 ∈ 𝔽𝑛𝑐2 , 𝛾 ∈ 𝔽𝑛𝑘2 ⧵ {0} do

𝑔 ← 0 ; /* goodness of current linear approximation */
for 𝑘 ∈ 𝔽𝑛𝑘2 , 𝑚 ∈ 𝔽𝑛𝑚2 do

𝑐 ← 𝑓(𝑘 ⧺ 𝑚);
𝑡 ← ⟨𝛼|𝑘⟩ ⊕ ⟨𝛽|𝑐⟩ ⊕ ⟨𝛾|𝑚⟩; /* is this approxmation true for this input? */
if 𝑡 then

𝑔 ← 𝑔 − 1;
end
else

𝑔 ← 𝑔 + 1;
end

end
if 𝑔 > 𝑔⊤ then

𝑔⊤ ← 𝑔;
𝛼⊤, 𝛽⊤, 𝛾⊤ ← 𝛼, 𝛽, 𝛾;

end
end
output: 𝛼⊤, 𝛽⊤, 𝛾⊤ and 𝑔⊤

def fwht(a) -> None:
"""In-place Fast Walsh–Hadamard Transform of array a."""
h = 1
while h < len(a):

# perform FWHT
for i in range(0, len(a), h * 2):

for j in range(i, i + h):
x = a[j]
y = a[j + h]
a[j] = x + y
a[j + h] = x - y

# normalize and increment
a /= 2
h *= 2

Listing 4.1: Python code for the classic fast walsh transform [6].
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Algorithm 2: Algorithm to extract the best linear approximation using the FWHT.
input : 𝑓 ∶ 𝔽𝑛𝑚+𝑛𝑘

2 ↦ 𝔽𝑛𝑐2
𝑔⊤ ← 0; /* current best goodness */
𝛼⊤, 𝛽⊤, 𝛾⊤ ← 0⊗𝑛𝑚 , 0⊗𝑛𝑐 , 0⊗𝑛𝑘 ; /* current best linear approximation */
for 𝛽 ∈ 𝔽𝑛𝑐2 ⧵ {0} do

𝐺 ← FWHT⟨𝛽|𝑓⟩ ; /* dicta of goodness for each input mask */
for 𝛾 ∈ 𝔽𝑛𝑘2 , 𝛼 ∈ 𝔽𝑛𝑚2 do

if 𝐺[𝛼 ⧺ 𝛾] > 𝑔⊤ then
𝑔⊤ ← 𝐺[𝛼 ⧺ 𝛾];
𝛼⊤, 𝛽⊤, 𝛾⊤ ← 𝛼, 𝛽, 𝛾;

end
end

end
output: 𝛼⊤, 𝛽⊤, 𝛾⊤ and 𝑔⊤

aOr blackbox function, this calculation needs𝒪 (𝑛2𝑛) steps with 𝑛 = 𝑛𝑘 + 𝑛𝑚.

As becomes apparent by looking at the nested loops, this algorithm has a runtime of

𝒪 (2𝑛𝑐 ⋅ (2𝑛𝑘+𝑛𝑚 + 𝒪FWHT𝑛𝑘+𝑛𝑚 ))

where 𝒪FWHT𝑛 denotes the runtime of the FWHT calculation for calculating the Walsh spectrum of
a 𝑛-bit Boolean function. Therefor this approach achieves a nearly quadratic speedup over the naive
algorithm with runtime

𝒪algorithm 2 ∈ 𝒪 ((𝑛𝑘 + 𝑛𝑚)2𝑛𝑘+𝑛𝑚+𝑛𝑐) . (4.1)

4.2 Quantum Algorithm for Finding Linear Relations
As the classical approachwas not t0o promising considering its runtime, wewill now look at a quantum
approach for finding linear relations. The approach covered here was first published by [37]. Their
algorithm, extended to have two input registers, is shown in algorithm 3.

Algorithm 3: Malviya algorithm: modified from [37]
input : Induced oracle 𝑈𝑓 for 𝑓 ∈ 𝐹(𝔽𝑛𝑚2 × 𝔽𝑛𝑘2 , 𝔽𝑛𝑐2 )
|𝑚 ⧺ 𝑘⟩ |𝑐⟩ ← |0⟩⊗𝑛𝑚 |0⟩⊗𝑛𝑘 |0⟩⊗𝑛𝑐 ;
|𝑚 ⧺ 𝑘⟩ |𝑐⟩ ← 𝐻⊗(𝑛𝑚+𝑛𝑘)(|𝑚 ⧺ 𝑘⟩) |𝑐⟩;
|𝑚 ⧺ 𝑘⟩ |𝑐⟩ ← 𝑈𝑓(|𝑚 ⧺ 𝑘⟩ |𝑐⟩);
|𝑚 ⧺ 𝑘⟩ |𝑐⟩ ← 𝐻⊗(𝑛𝑚+𝑛𝑘+𝑛𝑐)(|𝑚 ⧺ 𝑘⟩ |𝑐⟩);
output: Linear (affine) relation (𝛼, 𝛽, 𝛾) for 𝑓

The circuit model of this algorithm can be found in fig. 4.1. The corresponding unitary would be
𝐻𝑛𝑚+𝑛𝑘+𝑛𝑐𝑈𝑓(𝐻𝑛𝑚+𝑛𝑘 ⊗ 𝐼).

Theorem 4.2.1. Let 𝑓 ∶ 𝔽𝑛𝑚2 × 𝔽𝑛𝑘2 ↦ 𝔽𝑛𝑐2 be a cryptographic Boolean function. Running algorithm 3 on
𝑓 will return any linear approximation (𝛼, 𝛾, 𝛽) with probability

𝑝𝛼,𝛾,𝛽 =
|𝑐( ̄𝑡𝛼⧺𝛾,𝛽(𝑓))|2

2𝑛𝑐 .

Proof. This theorem can be proven by analyzing1 the steps of the algorithm:

1The same algorithm has been independently found by Christoph Graebnitz, most of the analysis (including LATEX source
code) has been derived from his work.
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|0⟩⊗𝑛𝑚 𝐻⊗𝑛𝑚

𝑈𝑓

𝐻⊗𝑛𝑚

𝛼

|0⟩⊗𝑛𝑘 𝐻⊗𝑛𝑘 𝐻⊗𝑛𝑘

𝛾

|0⟩⊗𝑛𝑐 𝐻⊗𝑛𝑐

𝛽

𝑚 𝑚

𝑘 𝑘

0 0⊕ 𝑓(𝑚,𝑘)

|Φ1⟩ |Φ2⟩ |Φ3⟩ |Φ4⟩

Figure 4.1: The circuit model depiction of the Malviya algorithm. The marked states correspond to the
steps of the algorithm analyzed in the proof of following theorem 4.2.1.

1. |Φ1⟩ = |0⟩⊗𝑛𝑚 |0⟩⊗𝑛𝑘 |0⟩⊗𝑛𝑐

2. |Φ2⟩ = (𝐻⊗(𝑛𝑚+𝑛𝑘) |0⟩⊗𝑛𝑚 |0⟩⊗𝑛𝑘) ⊗ (𝐼⊗𝑛𝑐 |0⟩⊗𝑛𝑐) = 1
√2𝑛𝑚+𝑛𝑘

∑𝑚⧺𝑘∈𝔽𝑛𝑚+𝑛𝑘
2

|𝑚 ⧺ 𝑘⟩ |0⟩⊗𝑛𝑐

3. |Φ3⟩ = 𝑈𝑓(|Φ2⟩) =
1

√2𝑛𝑚+𝑛𝑘
∑𝑚⧺𝑘∈𝔽𝑛𝑚+𝑛𝑘

2
|𝑚 ⧺ 𝑘, 𝑓(𝑚, 𝑘)⟩

4. After applying 𝐻𝑛𝑚+𝑛𝑘+𝑛𝑐 to |Φ3⟩ the register |Φ4⟩ is in the state

|Φ4⟩ = 𝐻𝑛𝑚+𝑛𝑘+𝑛𝑐 ⋅
1

√2𝑛𝑚+𝑛𝑘
∑

𝑚⧺𝑘∈𝔽𝑛𝑚+𝑛𝑘
2

|𝑚 ⧺ 𝑘, 𝑓(𝑚 ⧺ 𝑘)⟩ (4.2)

= 1
√2𝑛𝑚+𝑛𝑘

∑
𝑚⧺𝑘∈𝔽𝑛𝑚+𝑛𝑘

2

𝐻𝑛𝑚+𝑛𝑘+𝑛𝑐 ⋅ (|𝑚 ⧺ 𝑘, 𝑓(𝑚 ⧺ 𝑘)⟩) (4.3)

= 1
√22∗(𝑛𝑚+𝑛𝑘)+𝑛𝑐

∑
𝑚⧺𝑘∈𝔽𝑛𝑚+𝑛𝑘

2

∑
𝛼∈𝔽𝑛𝑚2 ,𝛾∈𝔽𝑛𝑘2 ,𝛽∈𝔽𝑛𝑐2

(−1)⟨𝜂|𝑚⧺𝑘⧺𝑓(𝑚⧺𝑘)⟩ |𝜂⟩ (4.4)

Let 𝛼 ∈ 𝔽𝑛𝑘2 , 𝛾 ∈ 𝔽𝑛𝑚2 , 𝛽 ∈ 𝔽𝑛𝑐2 s.t. 𝜂 = 𝛼 ⧺ 𝛾 ⧺ 𝛽, written as 𝛼𝛾𝛽 for readability.
Also let the normalization factor 𝑙 = 1/√22∗(𝑛𝑚+𝑛𝑘)+𝑛𝑐

Therefore eq. (4.4) can be written as

|Φ4⟩ = 𝑙 ∗ ∑
𝑚⧺𝑘∈𝔽𝑛𝑚+𝑛𝑘

2

∑
𝛼∈𝔽𝑛𝑚2 ,𝛾∈𝔽𝑛𝑘2 ,𝛽∈𝔽𝑛𝑐2

(−1)⟨𝛼⧺𝛾⧺𝛽|𝑚⧺𝑘⧺𝑓(𝑚⧺𝑘)⟩ |𝛼𝛾𝛽⟩ (4.5)

= 𝑙 ∗ ∑
𝑚⧺𝑘∈𝔽𝑛𝑚+𝑛𝑘

2

∑
𝛼∈𝔽𝑛𝑚2 ,𝛾∈𝔽𝑛𝑘2 ,𝛽∈𝔽𝑛𝑐2

(−1)⟨𝛼|𝑚⟩⊕⟨𝛾|𝑘⟩⊕⟨𝛽|𝑓(𝑚,𝑘)⟩ |𝛼𝛾𝛽⟩ (4.6)

using definition 3.2.2 eq. (4.6) can be written as

𝑙 ∗ ∑
𝛼∈𝔽𝑛𝑚2 ,𝛾∈𝔽𝑛𝑘2 ,𝛽∈𝔽𝑛𝑐2

(𝑡∗𝛼⧺𝛾,𝛽(𝑓) − 𝑡𝛼⧺𝛾,𝛽(𝑓)) |𝛼𝛾𝛽⟩

which can then be further simplified using definition 3.2.3 with 𝑛𝑥 = 𝑛𝑚 + 𝑛𝑘 and 𝑛𝑦 = 𝑛𝑐 to:

∑
𝛼∈𝔽𝑛𝑚2 ,𝛾∈𝔽𝑛𝑘2 ,𝛽∈𝔽𝑛𝑐2

𝑡∗𝛼⧺𝛾,𝛽(𝑓) − 𝑡𝛼⧺𝛾,𝛽(𝑓)
√22∗(𝑛𝑚+𝑛𝑘)+𝑛𝑐

= ∑
𝛼∈𝔽𝑛𝑚2 ,𝛾∈𝔽𝑛𝑘2 ,𝛽∈𝔽𝑛𝑐2

𝑡∗𝛼⧺𝛾,𝛽(𝑓) − 𝑡𝛼⧺𝛾,𝛽(𝑓)
2𝑛𝑚+𝑛𝑘 ∗ √2𝑛𝑐

(4.7)

= ∑
𝛼∈𝔽𝑛𝑚2 ,𝛾∈𝔽𝑛𝑘2 ,𝛽∈𝔽𝑛𝑐2

𝑐( ̄𝑡𝛼⧺𝛾,𝛽(𝑓))
√2𝑛𝑐

(4.8)

21



5. Measuring |Φ4⟩ will therefor return any linear relation 𝛼𝛾𝛽 with probability

𝑝𝛼,𝛾,𝛽 = (
𝑐( ̄𝑡𝛼⧺𝛾,𝛽(𝑓))

√2𝑛𝑐
)
2

=
|𝑐( ̄𝑡𝛼⧺𝛾,𝛽(𝑓))|2

2𝑛𝑐 (4.9)

Corollary 4.2.1.1. The probability ofmeasuring a linear relation (𝛼, 𝛽, 𝛾)whose correlation is large ismore
likely.

While the success probability might not be very high (discussed in next section) the algorithm is still
very interesting, as its complexity or runtime is in𝒪 (1) using the oracle model as it always only requires
a single call to the oracle 𝑈𝑓.
In the gate model we can see that it has a width of 𝑛𝑚 + 𝑛𝑘 +𝑛𝑐 qubits and a depth of 2+𝑑𝑈𝑓 (the two
consecutive Hadamard gates) and therefore a circuit size of 𝒪 (𝑛𝑚 + 𝑛𝑘 + 𝑛𝑐 + 𝒪𝑈𝑓) where 𝑑𝑈𝑓 and
𝒪𝑈𝑓 denote the depth and complexity of the oracle respectively.

4.3 Success rate of Malviya algorithm
As shown in theorem 4.2.1 the probability of measuring a single approximation (𝛼, 𝛾, 𝛽) is 𝑝𝛼,𝛾,𝛽 =
|𝑐( ̄𝑡𝛼⧺𝛾,𝛽(𝑓))|2

2𝑛𝑐
, but what exactly that means and how it relates to the success of the algorithm will be

discussed in this section.

4.3.1 Trivial Solution
Having a look at the trivial solution (all masks equal zero, 𝛼 ⧺ 𝛾 = 0𝑛𝑚+𝑛𝑘 , 𝛽 = 0𝑛𝑐) we can see that
this approximation would be always true, e.g. have correlation 1 (𝑐( ̄𝑡0,0(𝑓)) = 1).
Corollary 4.3.0.1. The trivial, as well as other perfect i.e. always true (or always false) approximations,
will be measured with a chance of 1/2𝑛𝑐

Proof. Perfect approximations will have a correlation of 1 or −1, which means that |𝑐( ̄𝑡𝛼⧺𝛾,𝛽(𝑓))| = 1.
The rest follows from theorem 4.2.1.

Non-Trivial Solutions
More complex approximations, which are neither always true nor always false are more interesting,
but also harder to analyze. To analyze this we will first need to introduce somemeasures of how linear
a function is to relate the success probability of the algorithm to those measures.

4.3.2 Linearity of Boolean Functions
We now want to define a measure on how “linearly approximateable” a function is.

To do that some further knowledge about Boolean functions is provided in the following.

Theorem 4.3.1. The squared sum of the “goodness” i.e. the square of the correlation of every linear ap-
proximation for any Boolean mapping also sums to the size of its codomain:

∀𝑓 ∈ 𝐹(𝔽𝑛𝑥2 , 𝔽𝑛𝑦2 ) ∶ ∑
𝑥∈𝔽𝑛𝑥2 ,𝑦∈𝔽𝑛𝑦2

|𝑐( ̄𝑡𝑥,𝑦(𝑓))|2 = 2𝑛𝑦

1Most graphics in this section where generated with my own code, provided at https://github.com/HannesGitH/
MA-public/blob/main/success_probabilities.ipynb.
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Proof. Since algorithm 3 is a valid quantum algorithm its success-probabilities sum to 1.
Therefor for its result (4.9) it holds:

∑
𝛼∈𝔽𝑛𝑚2 ,𝛾∈𝔽𝑛𝑘2 ,𝛽∈𝔽𝑛𝑐2

|𝑐( ̄𝑡𝛼⧺𝛾,𝛽(𝑓))|2
2𝑛𝑐 = 1

Corollary 4.3.1.1. This also provides proof for theorem 3.2.4

Proof. by corollary 3.2.3.1

Let 𝒜𝑛,𝑚 denote the affine subset of 𝐹(𝔽𝑛2 , 𝔽𝑚2 ).
Definition 4.3.2. The non-linearity of a Boolean function 𝑓 ∶ 𝔽𝑛2 ↦ 𝔽2 is defined as the minimal
Hamming-Distance between its truth table and any other linear functions truth table [10, definition 5]2:

̄ℒ(𝑓) ∶= min
𝑔∈𝒜𝑛,1

#{𝑥 ∈ 𝔽𝑛2 ∶ 𝑓(𝑥) ≠ 𝑔(𝑥)}

This could be expanded to ameasure of the non-linearity of a vectorial Boolean function 𝑓 ∶ 𝔽𝑛𝑥2 ↦ 𝔽𝑛𝑦2
by:

Corollary 4.3.2.1. The non-linearity of a vectorial Boolean function 𝑓 ∶ 𝔽𝑛𝑥2 ↦ 𝔽𝑛𝑦2 is defined as the
minimal Hamming-Distance between its truth table and any other linear functions truth table:

̄ℒ(𝑓) ∶= min
𝑔∈𝒜𝑛𝑥,1

#{𝑥 ∈ 𝔽𝑛2 ∶ 𝑓(𝑥) ≠ 𝑔(𝑥)}

Theorem 4.3.3. We could also measure the non-linearity of 𝑓 ∶ 𝔽𝑛2 ↦ 𝔽2 by:

̄ℒ(𝑓) = min
𝑔∈𝒜𝑛,1

2𝑛−1 (𝑐(𝑓 = 𝑔) + 1)

Proof. Let 𝑓, 𝑔 ∈ 𝐹(𝔽𝑛2 , 𝔽2)

2𝑛 ⋅ 𝑐(𝑓 = 𝑔) = #{𝜉 ∈ 𝔽𝑛2 | 𝑓(𝜉) ≠ 𝑔(𝜉)} − #{𝜉 ∈ 𝔽𝑛2 | 𝑓(𝜉) = 𝑔(𝜉)} (4.10)
= #{𝜉 ∈ 𝔽𝑛2 | 𝑓(𝜉) ≠ 𝑔(𝜉)} − 2𝑛 + #{𝜉 ∈ 𝔽𝑛2 | 𝑓(𝜉) ≠ 𝑔(𝜉)} (4.11)

⇔ 2𝑛−1 (𝑐(𝑓 = 𝑔) + 1) = #{𝜉 ∈ 𝔽𝑛2 | 𝑓(𝜉) ≠ 𝑔(𝜉)} (4.12)

Corollary 4.3.3.1. We could also measure the non-linearity of 𝑓 ∶ 𝔽𝑛2 ↦ 𝔽2 by:

min
𝛼∈𝔽𝑛2

2𝑛−1 (𝑐(𝑡𝛼,1(𝑓)) + 1)

With the minor difference that this only regards linear (not affine) functions.

Proof. Let 𝛼 be the coefficients of linear function 𝑔. As of definition 3.2.1:

̄𝑡𝛼,1(𝑓, 𝑥) = (⟨𝛼|𝑥⟩⇔𝑓(𝑥)) = (𝑔(𝑥)⇔𝑓(𝑥)) (4.13)

2This is also congruent to 𝑓 being 𝜖 ∶≥ ℒ̄(𝑓)
2𝑛

near to being linear, as used in [24]. Or equivalently 𝑓 is 𝜖 ∶= ℒ̄(𝑓)−1
2𝑛

far from
being linear.
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As the Hamming variant can be extended into a measure for vectorial Boolean functions, so can the
correlation variant. One such idea would be to use

̄ℒ(𝑓)∶= 1
2𝑛−1 min

𝑚𝑥∈𝔽𝑛2
𝑐( ̄𝑡𝑚𝑥 ,(1⊗𝑛𝑦 )(𝑓)) + 1

with 1⊗𝑛𝑦 being the all-ones vector of length 𝑛𝑦, but that would disregard all outputmasks, sowe rather
define it as follows:

Definition 4.3.4. The non-linearity of a vectorial Boolean function 𝑓 ∶ 𝔽𝑛𝑥2 ↦ 𝔽𝑛𝑦2 is defined as:

̄ℒ(𝑓) ∶= 1
2𝑛−1 min

𝑚𝑥 ,𝑚𝑦∈𝔽𝑛2
𝑚𝑦≠0

𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓)) + 1

The input mask is allowed to be zero s.t. the overall distribution of 𝑓 can be taken into account. Mean-
while, the output mask must not be zero, as that would only yield trivial results3.

Anyway, the non-linearity of a function is not of interest for this thesis, but rather its
“linear-approximatibility”.

To calculate that we could use the inverse of the non-linearity, as the smaller the non-linearity, the
more linear the function is: 1/ℒ̄.
Or another approach would be to use the maximum instead of the minimum, although the trivial
solution should be disregarded, as it is always the maximum:

ℒmax(𝑓) ∶= max
𝑚𝑥 ,𝑚𝑦∈𝔽𝑛2

𝑚𝑦≠0

|𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓))|. (4.14)

This would make the most sense in a classical setting, where only one approximation will be outputted
and used. But as soon as we try linear cryptanalysis and want to have multiple linear approximations
to get multiple bits of information, or a quantum (or nondeterministic) version is used where multiple
approximations might be measured, we want to take multiple approximations into account.

As we already have a measure of how good a single approximation is, we could simply sum up the
approximations with a specific monotonically increasing activation function 𝕒 ∶ ℝ ↦ ℝ and use that
as a measure of how good the function can be linearly approximated:

ℒ𝕒(𝑓) ∶= ∑
𝑚𝑥 ,𝑚𝑦∈𝔽𝑛2

𝑚𝑦≠0

𝕒 (|𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓))|). (4.15)

This seems like an interesting approach, but it is not very clear what the best activation function would
be. One such idea, with 𝕒(𝑥) = 𝑥2, for example would not work at all, since that results in a constant
value of 22𝑛 for any function 𝑓, as shown in theorem 3.2.7.

As a result of that observation the following hypothesis is made:

Hypothesis 4.3.5. Any activation function 𝕒 used in eq. (4.15) should have a second derivate that is greater
than the one of 𝑥2 in the relevant area (i.e. 𝑥 ∈ [0, 1]). It should also be monotonically increasing and
have a value of 0 at 0.

To test hypothesis 4.3.5 we will include the activation function 𝕒(𝑥) = √𝑥 in most analyses.
One argument strengthening hypothesis 4.3.5, stated in [38] as a direct result of Parsevals theorem, is
that the closer a specific correlation goes to zero the higher the other values squares get and vice versa.

3This reduces the sum by 2𝑛𝑥 possible masks. But all of them with𝑚𝑥 ≠ 0 will have correlation zero and therefor play no
role. Only the trivial mask𝑚𝑥 = 𝑚𝑦 = 0 will always be true and therefor has to be disregarded.
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Therefor we cannot simply look for most high correlations, but rather for the most uneven distribution
(furthest from bent functions) of correlations, i.e. a few very high correlations and many very low
correlations.
I therefor propose the following measure for the “approximatibility” of a Boolean function 𝑓 ∶ 𝔽𝑛2 ↦
𝔽2:

ℒ∧4(𝑓) ∶= ∑
𝑚𝑥 ,𝑚𝑦∈𝔽𝑛2

𝑚𝑦≠0

|𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓))|4

As a quick preliminary check that this does not result in a constant value for all functions, a quick
analysis is made. For readability reasons𝑚𝑦 = 1:

2𝑛

∑
𝛼=0

|𝑐( ̄𝑡𝛼,1(𝑓))| = ∑
𝛼∈𝔽𝑛2

( ∑
𝑥∈𝔽𝑛2

(−1)⟨𝛼|𝑥⟩⊕𝑓(𝑥))
4

(4.16)

= ∑
𝛼∈𝔽𝑛2

( ∑𝑥1∈𝔽𝑛2
(−1)⟨𝛼|𝑥1⟩⊕𝑓(𝑥1)*∑𝑥2∈𝔽𝑛2

(−1)⟨𝛼|𝑥2⟩⊕𝑓(𝑥2)*∑𝑥3∈𝔽𝑛2
(−1)⟨𝛼|𝑥3⟩⊕𝑓(𝑥3)*∑𝑥4∈𝔽𝑛2

(−1)⟨𝛼|𝑥4⟩⊕𝑓(𝑥4)) (4.17)

= ∑
𝑥1,𝑥2,𝑥3,𝑥4∈𝔽𝑛2

(−1)𝑓(𝑥1)⊕𝑓(𝑥2)⊕𝑓(𝑥3)⊕𝑓(𝑥4) ∑
𝛼∈𝔽𝑛2

(−1)⟨𝛼|𝑥1⟩⊕⟨𝛼|𝑥2⟩⊕⟨𝛼|𝑥3⟩⊕⟨𝛼|𝑥4⟩ (4.18)

= ∑
𝑥1,𝑥2,𝑥3,𝑥4∈𝔽𝑛2

(−1)𝑓(𝑥1)⊕𝑓(𝑥2)⊕𝑓(𝑥3)⊕𝑓(𝑥4) ∑
𝛼∈𝔽𝑛2

(−1)⟨𝛼|𝑥1⊕𝑥2⊕𝑥3⊕𝑥4⟩ (4.19)

From lemma 3.2.8 follows

∑
𝛼∈𝔽𝑛2

(−1)⟨𝛼|𝑥1⊕𝑥2⊕𝑥3⊕𝑥4⟩ = {2
𝑛, 𝑖𝑓 𝑥1 = 𝑥2 ⊕ 𝑥3 ⊕ 𝑥4
0, 𝑒𝑙𝑠𝑒

therefor

2𝑛

∑
𝛼=0

|𝑐( ̄𝑡𝛼,1(𝑓))| = ∑
𝛼∈𝔽𝑛2

( ∑
𝑥∈𝔽𝑛2

(−1)⟨𝛼|𝑥⟩⊕𝑓(𝑥))
4

(4.20)

= ∑
𝑥1,𝑥2,𝑥3,𝑥4∈𝔽𝑛2

(−1)𝑓(𝑥2⊕𝑥3⊕𝑥4)⊕𝑓(𝑥2)⊕𝑓(𝑥3)⊕𝑓(𝑥4)2𝑛. (4.21)

Now, if 𝑓 is linear this results in∑𝑥1,𝑥2,𝑥3,𝑥4∈𝔽𝑛2
(−1)𝑓(𝑥2)⊕𝑓(𝑥3)⊕𝑓(𝑥4)⊕𝑓(𝑥2)⊕𝑓(𝑥3)⊕𝑓(𝑥4)2𝑛 = 24𝑛. But

if that is not the case then this value gets lower with less “linear approximatible” 𝑓s.

One might also consider an exponential activation function like 𝕒(𝑥) = 2𝑥 but as seen in fig. 4.2 this
also has a lower second derivate in the relevant area (i.e. 𝑥 ∈ [0, 1]) than 𝑥2 and therefor is not suited
as well.

Another, arguably even simpler idea would be to use a binary threshold (that simply outputs whether
input 𝑋 is greater or equal than a specified threshold 𝜏) as an activation function.
Let

𝛿𝜏(𝑥) = {1 𝑥 ≥ 𝜏
0 else

We can nowuse 𝛿 as our activation function 𝕒 to simply count howmany approximationswith a certain
“goodness” (correlation) exist for a given function:
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Figure 4.2: Comparison of different activation functions. As 𝑥2 results in a constant measure for any
function all functions above promote non-linear functions while functions below promote functions
with higher linearities.

Definition 4.3.6. let
ℒ𝛿𝜏(𝑓) ∶= ∑

𝑚𝑥∈𝔽
𝑛𝑥
2 ,𝑚𝑦∈𝔽

𝑛𝑦
2

𝛿𝜏 (||𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓))||)

be a measure of the linear approximateability of any vectorial Boolean function 𝑓 ∶ 𝔽𝑛𝑥2 ↦ 𝔽𝑛𝑦2

ℒ𝛿𝜏 , ℒ∧4, ℒmax,
1
ℒ̄
might all be reasonable measures of linear approximatibility depending on the con-

text used, but they also all have the common disadvantage of being exponential in the number of cal-
culations needed to compute them.

But I could not find any good measure of linear approximatibility computable in 𝑃 (polynomial time),
and can think of a way how that could be classically possible. Other measures e.g. by [10] are expo-
nentially hard to compute as well.

4.3.2.1 Normalized measures

Another disadvantage is, that they all have a different scaling, resulting in different values even for
the same linear, i.e. maximal approximatible function. That is why we define the following somewhat
normalized versions (compare with end of section 4.3.4.1) for any 𝑓 ∶ 𝔽𝑛𝑥2 ↦ 𝔽𝑛𝑦2 :
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ℒ∗
max = ℒmax = max

𝑚𝑥∈𝔽
𝑛𝑥
2 ,𝑚𝑦∈𝔽

𝑛𝑦
2

𝑚𝑦≠0

|𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓))|

1
̄ℒ
∗
= 21−𝑛𝑥

̄ℒ = min
𝑚𝑥∈𝔽𝑛2

𝑐( ̄𝑡𝑚𝑥 ,(1⊗)(𝑓)) + 1

ℒ∗
𝛿𝜏 = ℒ𝛿𝜏/2𝑛𝑦 = 1

2𝑛𝑦 ∑
𝑚𝑥∈𝔽

𝑛𝑥
2 ,𝑚𝑦∈𝔽

𝑛𝑦
2

𝑚𝑦≠0

𝛿𝜏 (||𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓))||)

ℒ∗
∧4 = ℒ∧4/2𝑛𝑦 = 1

2𝑛𝑦 ∑
𝑚𝑥∈𝔽

𝑛𝑥
2 ,𝑚𝑦∈𝔽

𝑛𝑦
2

𝑚𝑦≠0

||𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓))||
4

ℒ∗
∧ 1
2
= ℒ∧ 1

2
/2𝑛𝑦 = 1

2𝑛𝑦 ∑
𝑚𝑥∈𝔽

𝑛𝑥
2 ,𝑚𝑦∈𝔽

𝑛𝑦
2

𝑚𝑦≠0

||𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓))||
1
2

With those measures we can now try to analyze the success probability of the algorithm for different
kinds of functions.

4.3.3 Their function
In their paperMalviya et al. [37] do not give a success probability for their algorithm. They do, however,
present some empirical results for one arbitrary 4-to4-bit vectorial Boolean function.

Wewill have a look at their results first and then try to generalize them to any function. Having a closer
look at their function we can apply some measures created in section 4.3.2. As their function is quite
small we can calculate the correlation of every possible mask/ approximation. Resulting distributions
are shown in fig. 4.3 and fig. 4.4.
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Figure 4.3: Count of how many different masks (𝑚𝑥, 𝑚𝑦) have a certain correlation 𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓)), for
the 𝑓 provided by Malviya et al. That this approaches a normal distribution is not a coincidence and
will be discussed in section 4.3.4.2.

These figures, especially fig. 4.5 should give a good intuition how 𝑓 behaves and how that results in the
success probability of the algorithm.

As we can see, the optimally bad approximations (i.e. correlation zero) will not be measured, which
is a good thing. However, the probability of measuring a good approximation (i.e. correlation one) is
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Figure 4.4: Count of how many different masks (𝑚𝑥, 𝑚𝑦) have a certain “goodness”, i.e. absolute cor-
relation |𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓))|, for the 𝑓 provided by Malviya et al.
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Figure 4.5: Probability of measuring a mask with a certain goodness, i.e. absolute correlation
|𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓))|, for the 𝑓 provided by Malviya et al. The probabilities are calculated in accordance with
eq. (4.25), and are 0, 27

16⋅4
, 24
16⋅4

, 9
16⋅4

, 4
16⋅4

in the same order as in fig. 4.4 respectively.

only 9
16⋅4

, which is quite low for the low complexity of 𝑓. Also, the trivial approximation (i.e. masks
zero) gets measured with probability 1

16
, which is not ideal either, as this approximation is always true

and thus not interesting, this probability is exactly as expected (compare section 4.3.1) though.

With that information we can also calculate some measures of how linear, as defined in section 4.3.2,
𝑓 is.
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Iteration size Trivial Highly Least
1024 60.8 (5.94%) 150.4 (14.69%) 436.4 (42.62%)
2048 130.6 (6.38%) 292.6 (14.29%) 865.8 (42.28%)
3072 201.6 (6.56%) 418.2 (13.61%) 1281.8 (41.73%)
4096 247.6 (6.04%) 586.8 (14.33%) 1708.8 (41.72%)
5120 314.8 (6.15%) 717.2 (14.01%) 2153.2 (42.05%)
6144 390.4 (6.35%) 856.8 (13.95%) 2601 (42.33%)
7168 447.4 (6.24%) 1024 (14.29%) 3003 (41.89%)
8192 520.8 (6.36%) 1163.6 (14.20%) 3446.8 (42.08%)
Average % 6.25% 14.17% 42.09%

Table 4.1: Simulation results for the algorithm by Malviya et al. with different iteration sizes[37].

ℒ∗
max = 0.75
1
̄ℒ
∗
= 𝑐( ̄𝑡1000,1111(𝑓)) + 1 = 8

−0.75 + 1 = 4

ℒ∗
𝛿0.7 = 4

16
ℒ∗
𝛿0.3 = 28

16
ℒ∗
∧ 1
2
= 1
16(108 ⋅ √0.25 + 24 ⋅ √0.5 + 4 ⋅ √0.75 + 1 ⋅ √1) ≈ 4.7

ℒ∗
∧4 =

1
16(108 ⋅ 0.25

4 + 24 ⋅ 0.54 + 4 ⋅ 0.754 + 1 ⋅ 14) = 67
256

ℒ𝕡0.7
4 = 4 ⋅ (34

1
24 )

2 = 9
1024

With some intuitive understanding of the function 𝑓 we can look at the results by Malviya et al. (ta-
ble 4.1) again. We see that measuring the trivial approximation is exactly as likely as calculated. The
“highly” linear approximations are certainly meant to be the ones with absolute correlation 0.75 as
9
64
≈ 0.1417, and with the same reasoning the “least” linear approximations are the ones with absolute

correlation 0.25. The missing 37.49% are therefor the approximations with absolute correlation 0.5. As
all uncertainty in their results only comes from the random measurement in the end (they probably
could have skipped that, and just look at the resulting distribution before measuring, resulting in the
same probabilities asmy theoretical analysis) and not from any decohering effects, the very bad approx-
imations (with correlation 0) are not measured at all. This would not be the case in a real quantum
computer, where decoherence would result in a non-zero probability of measuring the trivial approxi-
mation, as can be seen in their practical results, where those bad approximations are measured with a
probability of > 1

2
.

4.3.4 Other special cases
We can now try to generalize the results from section 4.3.3 to any function 𝑓. We will start by analyzing
a few special cases and then try to generalize those results.

4.3.4.1 Linear (affine) function

If 𝑓 is linear, i.e. 𝑓(𝑥) = 𝑀𝑥 for some binary matrix 𝑀, then the algorithm is guaranteed to measure
one perfect approximation. This can be seen in fig. 4.6c and fig. 4.7c for the affine case.

This result can easily be explained if we have a closer look at what a vectorial Boolean function actually
is:
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(b) Count of how many differ-
ent masks (𝑚𝑥, 𝑚𝑦) have a certain
“goodness”, i.e. absolute correla-
tion |𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓))|, for a linear 4-
to-4-bit function.
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(c) Probability of measuring
a mask with a certain good-
ness, i.e. absolute correlation
|𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓))|, for a linear 4-to-4-
bit function.

Figure 4.6: Analysis of a linear 4-to-4-bit function.
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(a) Count of how many differ-
ent masks (𝑚𝑥, 𝑚𝑦) have a cer-
tain correlation 𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓)), for
an affine 4-to-4-bit function.
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(b) Count of how many differ-
ent masks (𝑚𝑥, 𝑚𝑦) have a certain
“goodness”, i.e. absolute correla-
tion |𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓))|, for an affine 4-
to-4-bit function.
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(c) Probability of measuring
a mask with a certain good-
ness, i.e. absolute correlation
|𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓))|, for an affine 4-to-
4-bit function.

Figure 4.7: Analysis of an affine 4-to-4-bit function.
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Lemma 4.3.7. Any vectorial Boolean function 𝑓 ∶ 𝔽𝑛𝑥2 ↦ 𝔽𝑛𝑦2 can be constructed by combining 𝑛𝑦 linear
Boolean functions 𝑓𝑖 with 𝑛𝑥 input bits each, i.e. 𝑓(𝑥) =⧺𝑛𝑦

𝑖=1𝑓𝑖(𝑥𝑖).
This means that every output bit can be considered as its own linear function, and thus there are 𝑛𝑦
single bit linear functions that can be combined into 2𝑛𝑦 different vectorial linear functions (of which
one is the trivial one). Each of them has a perfect approximation, as it itself is perfectly linear, and thus
the algorithm will measure one of them with probability 1.

In fig. 4.6 𝑛𝑦 = 4 and therefor 2𝑛𝑦 = 16 of the 2𝑛𝑥+𝑛𝑦 = 256 approximations are perfect, while the rest
(as proven by theorem 3.2.4) have correlation 0 and therefor will not be measured.
The only difference between fig. 4.7(a) and fig. 4.6(a) is, that the single bit functions, of which the
affine function is constructed of, are affine instead of linear. This means that some linear approxima-
tions might be inverted resulting in a negative (still perfect) correlation.

This result is in accordance with theorem 3.2.7 and can even be generalized to:

Lemma 4.3.8. Any function 𝑓 ∶ 𝔽𝑛𝑥2 ↦ 𝔽𝑛𝑦2 that has exactly 2𝑛𝑦 perfect approximations (e.g. all affine
functions) results in Malviya algorithm measuring one of those approximations.

Tobetter generalize thiswewill calculate the “approximatibility”-measures for these affine functions:

ℒmax = 1
1
̄ℒ = 2𝑛−1

0 + 1 = 2𝑛𝑥−1

ℒ𝛿0.7 = 2𝑛𝑦 − 1
ℒ𝛿0.3 = 2𝑛𝑦 − 1
ℒ∧𝑥 = 2𝑛𝑦 − 1 ∗ 1𝑥 + 0 = 2𝑛𝑦 − 1

ℒ𝕡𝜏 = 1 − 1
2𝑛𝑦

Where the −1 is a result of disregarding the trivial approximation. Also note that 1
ℒ̄
here only regards

linear (not affine functions) since affine functions can get even higher values, depending on their exact
setup, up to infinity.
As we can see they are not normalized, but we might want to do that to compare them to each other.
That is why there are normalized versions of them introduced in section 4.3.2.1.

These results also apply to asymmetric functions, i.e. functions where 𝑛𝑥 ≠ 𝑛𝑦, results are shown in
fig. D.1 and fig. D.2.

The first major observation here is, that choosing the right measure, or rather the right 𝜏 for the mea-
sure, is very important. This does not mean the measure is not suitable for the task, but rather that the
measure has to be chosen carefully, for example the 𝑓 chosen by Malviya et al. has much better results
with 𝜏 = 0.3 as there are quite a few mediocre approximations, while linear functions only have a few
very good ones, so choosing a too low 𝜏 can be a pitfall.

Partially linear

A possible generalization of those linear functions is to look at functions that are only partially linear,
defined as follows:

Definition 4.3.9. A 𝑘
𝑛𝑦

-partially vectorial Boolean function 𝑓 ∶ 𝔽𝑛𝑥2 ↦ 𝔽𝑛𝑦2 is constructed of 𝑘 single-bit
linear Boolean functions and 𝑛𝑦 − 𝑘 arbitrary single-bit Boolean function 𝑓𝑖 with 𝑛𝑥 input bits each.

Definition 4.3.9 is a generalization of lemma 4.3.7.
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(b) Count of how many differ-
ent masks (𝑚𝑥, 𝑚𝑦) have a certain
“goodness”, i.e. absolute correla-
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Figure 4.8: Analysis of a partially linear 4-to-4-bit function, in this case the concatenation of the identity
(4 to 4 bit linear function) and the function used by Malviya et al. (4 to 4 bit non-linear function). In
comparison to the figures in section 4.3.3 it becomes apparent that it is exactly the same distribution,
just multiplied by a factor of 24 = 16 (the additional linear output bits).

It is easy to see that this function has 2𝑘 perfect approximations, i.e. ℒ∗
𝛿1(𝑓) =

2𝑘

2𝑛𝑦
. Namely, those that

ignore the 𝑛𝑦 − 𝑘 arbitrary output bits and only look at all possible combinations of the 𝑘 linear ones.
Adding a single non-linear output bit with some specific distribution will make this distribution hold
true nomatter how themasks of the linear bit are chosen, as the linear part will either always (or never)
or exactly half of the time hold true, not influencing the non-linear part.
This directly extends into any amount of non-linear output bits.
Looking at an example, the concatenation of the identity (4 to 4 bit linear function) and the function
used by Malviya et al. (4 to 4 bit non-linear function),
i.e. in python notation lambda x : x | (f_malviya(x)<<4), results in a function with exactly the
same properties as the function used by Malviya et al., just multiplied by the possible combinations of
the linear output bits (in this case 24 = 16) as can be seen in fig. 4.8.

Bent function

On the complete opposite site of the spectrum, in some ways exactly between affine (in this case affine
but not linear) and linear functions, are bent functions.

Definition 4.3.10 ([38, 45, 1]). 𝑓 ∶ 𝔽𝑛2 ↦ 𝔽2 is called bent iff

∀𝛼 ∈ 𝔽2 ∶ ̂𝜒𝑓(𝛼) = ±2
𝑛
2 = ±√2𝑛

Corollary 4.3.10.1. If 𝑓 ∶ 𝔽𝑛2 ↦ 𝔽2 is bent then

∀𝛼 ∈ 𝔽2 ∶ 𝑐( ̄𝑡𝛼(𝑓)) = ±2−
𝑛
2 = ± 1

√2𝑛

Proof. directly follows from definition 4.3.10 and corollary 3.2.3.1.

This could be considered the worst case for theMalviya algorithm, as it has themost evenly distributed
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correlations. The measures would be as follows:

ℒ∗
max = 2−

𝑛
2

1
̄ℒ
∗

= 1 − 2−
𝑛
2

ℒ∗
𝛿𝜖− = ℒ𝕡𝜖− = 1 − 1

2𝑛
ℒ∗
𝛿𝜖+ = ℒ𝕡𝜖+ = 0

ℒ∗
∧ 1
2
= 1
2𝑛

2𝑛

∑
𝛼=0

1

√2𝑛
1
2

= 1
4√2𝑛

ℒ∗
∧4 =

1
2𝑛

2𝑛

∑
𝛼=0

1
√2𝑛

4 = 1
22𝑛

Where 𝜖±(𝑥) ∶= limℎ→0 𝑥 ± ℎ is the smallest5 number that is bigger than 𝑥 (𝜖+) or the biggest number
smaller than 𝑥 (𝜖−).

A graphic here is omitted, as every correlation (except the trivial one) is equal and therefor the proba-
bility of measuring any of them is equal.
One could argue that the Malviya algorithm can not be successful in this case, as there is no good ap-
proximation. Except if success will be defined via 𝜏 ≤ 𝜖−, but that seems unreasonable.
So if the function is bent, this setup of linear cryptanalysis can not help.

Thus far we only considered single bit functions, but we can generalize this to any 𝑛𝑥-to-𝑛𝑦-bit vectorial
Boolean function 𝑓 by looking at the single bit functions 𝑓𝑖 that 𝑓 is constructed of.

Definition 4.3.11. Avectorial Boolean function𝑓 ∶ 𝔽𝑛𝑥2 ↦ 𝔽𝑛𝑦2 is called bent iff all of its single bit functions
𝑓𝑖 (as deconstructed via lemma 4.3.7) are bent [51].

This definition would allow two subfunctions 𝑓𝑖 and 𝑓𝑗 to be identical, i.e. ∀𝑥 ∈ 𝔽𝑛𝑥2 ∶ 𝑓𝑖(𝑥) =
𝑓𝑗(𝑥). Therefor two output bits of 𝑓 would always be equal, resulting in the approximation that has
exactly those bits set to have correlation 1, which would give us one bit of information. A design of a
cryptographic function would want to avoid that, and therefor we will use a slightly different definition
(similar to [41]), that is more restrictive but alsomore useful for our purposes, it relies on the same idea
of extending definitions via the correlation as used in definition 4.3.4 and therefor disallows output bits
to correlate6 with each other:

Definition 4.3.12. A vectorial Boolean function 𝑓 ∶ 𝔽𝑛𝑥2 ↦ 𝔽𝑛𝑦2 is called bent iff

∀𝑚𝑥 ∈ 𝔽𝑛𝑥2 , 𝑚𝑦 ∈ 𝔽𝑛𝑦2 , 𝑛𝑦 ≠ 0 ∶ 𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓)) = ± 1
√2𝑛𝑥+𝑛𝑦

Compared to the non-vectorial (single bit) variant, the distribution and therefor success-rate of the
Malviya algorithm does not change.

5Does not have to be.
6Except exactly with correlation ± 1

√2𝑛𝑥+𝑛𝑦
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(b) Count of how many different masks (𝑚𝑥, 𝑚𝑦)
have a certain “goodness”, i.e. absolute correlation
|𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓))|, for a random 8-to-8-bit function.

Figure 4.9: Analysis of a random 8-to-8-bit function. The probabilities have been omitted as they were
quite crowded and not very interesting.

ℒ∗
max = 2−

𝑛𝑥+𝑛𝑦
2

1
̄ℒ
∗

= 1 − 2−
𝑛𝑥+𝑛𝑦

2

ℒ∗
𝛿𝜖− = ℒ𝕡𝜖− = 1 − 1

2𝑛𝑥+𝑛𝑦
ℒ∗
𝛿𝜖+ = ℒ𝕡𝜖+ = 0

ℒ∗
∧ 1
2
= 1
2𝑛𝑦 ∑

𝑚𝑥∈𝔽
𝑛𝑥
2 ,𝑚𝑦∈𝔽

𝑛𝑦
2

𝑛𝑦≠0

( 1
√2𝑛𝑥+𝑛𝑦

)
1
2
= 2𝑛𝑦−1 ⋅ 2𝑛𝑥

2𝑛−𝑦
1

4√2𝑛𝑥+𝑛𝑦
= √𝑛𝑥
2√𝑚𝑥

ℒ∗
∧4 =

1
2𝑛𝑦 ∑

𝑚𝑥∈𝔽
𝑛𝑥
2 ,𝑚𝑦∈𝔽

𝑛𝑦
2

𝑛𝑦≠0

( 1
√2𝑛𝑥+𝑛𝑦

)
4

= 2𝑛𝑦−1 ⋅ 2𝑛𝑥
2𝑛−𝑦

1
22(𝑛𝑥+𝑛𝑦)

= 1
22𝑛𝑦+𝑛𝑥+1

4.3.4.2 Random function: normally distributed correlations

As many cryptographic schemes have plausible deniability as a goal, they have to be indistinguishable
from random noise. Many schemes also reach that as a side effect[44]. Therefor analyzing functions
that are indistinguishable from random noise is especially interesting.
As it is quite hard to construct a bijective function that is indistinguishable from randomnoise however,
we will use actual random noise instead. This of course could not be used as an actual cryptographic
function as it is not reversible, but it will result in similar results using the Malviya algorithm.

The largest function I could reasonably brute-force all correlation values for is an 8-to-8-bit function,
which results in the distribution of correlations shown in fig. 4.9.

As becomes apparent, especially in fig. 4.9a, the correlations seem to be normally distributed in the
limit. This is not very unexpected, considering that we essentially have a sum of many binary random
variables. It is a very interesting observation nonetheless, as it allows us to generalize the success rates
of the Malviya algorithm to any scheme that achieves plausible deniability.

When fitting a normal distribution to the correlations for our 8-to-8-bit random function as shown in
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Figure 4.10: Fitting a normal distribution to the correlations of a random 8-to-8-bit function. The fitted
function is in accordance with eq. (4.22).

fig. 4.10, we get the following fit:

𝑓 ∶= 28+1 ⋅ 𝒩 (0, ( 1
8 + 8)

2
) (4.22)

Here𝒩 (𝜇, 𝜎2) denotes the normal distribution with mean 𝜇 and variance 𝜎2:

𝑓(𝑥) = 1
𝜎√2𝜋

𝑒−
1
2 (

𝑥−𝜇
𝜎 )

2

.

Choosing high input and output lengths for our random function is important, as the normal distri-
bution only approximates the actual distribution of correlations for large enough input and output
lengths, so to validate our hypothesis from fig. 4.3 choosing 𝑛𝑥 = 𝑛𝑦 = 8 is a good choice.
Unfortunately this does not allow distinguishing which length was responsible for which parameter in
eq. (4.22). Therefor a quick empirical test7 with 𝑛𝑥 = 7 and 𝑛𝑦 = 5 was done, shown in fig. 4.11 which
resulted in the following fit:

𝑓 ∶= 27+1 ⋅ 𝒩 (0, ( 1
7 + 5)

2
) (4.23)

Allowing us to generalize8 the fit to

𝑓 ∶= 2𝑛𝑥+1 ⋅ 𝒩 (0, ( 1
𝑛𝑥 + 𝑛𝑦

)
2
) . (4.24)

This would be a very useful result as it allows us to efficiently calculate how many approximations
with a given correlation and therefor goodness exist in a random function of a given size. This makes

7Manymore tests with𝑛𝑥 and𝑛𝑦 ranging between 3 and 8 weremade to confirm the result, but the graphics are not included
in this thesis, but can be simply be generated via the provided script.

8This is only a hypothesis, but the empirical evidence is strong. Future work could probably analytically verify (or deny) that
result.
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Figure 4.11: Fitting a normal distribution to the correlations of a random 7-to-5-bit function. The fitted
function is in accordance with eq. (4.23).

it possible to give a much more efficient formula for the linearity of 𝑓 ∶ 𝔽𝑛𝑥2 ↦ 𝔽𝑛𝑦2 :

ℒ𝕒(𝑓) ≈
2𝑛𝑥−2

∑
𝑐=−2𝑛𝑥−2

(𝕒 ( |𝑐|
2𝑛𝑥−1 )) ⋅

⎛
⎜⎜⎜
⎝

2𝑛𝑥+1 ⋅ 1
1

𝑛𝑥+𝑛𝑦
√2𝜋

𝑒
− 1
2(

𝑐
2𝑛𝑥−1

−0
1

𝑛𝑥+𝑛𝑦
)
2

⎞
⎟⎟⎟
⎠

=
2𝑛𝑥−2

∑
𝑐=−2𝑛𝑥−2

𝕒 ( |𝑐|
2𝑛𝑥−1 ) ⋅ 2

𝑛𝑥+1 ⋅
𝑛𝑥 + 𝑛𝑦
√2𝜋

𝑒−
1
2 (

𝑐⋅(𝑛𝑥+𝑛𝑦)
2𝑛𝑥−1

)
2

= 2
2𝑛𝑥−2

∑
𝑐=0

𝕒 ( 𝑐
2𝑛𝑥−1 ) ⋅ 2

𝑛𝑥+1 ⋅
𝑛𝑥 + 𝑛𝑦
√2𝜋

𝑒−
1
2 (

𝑐⋅(𝑛𝑥+𝑛𝑦)
2𝑛𝑥−1

)
2

= 2 ⋅ 2𝑛𝑥−1
2𝑛𝑥−2

∑
𝑐=0

𝕒 ( 𝑐
2𝑛𝑥−1 ) ⋅ 2

𝑛𝑥+1 ⋅
𝑛𝑥 + 𝑛𝑦
√2𝜋

𝑒−
1
2 (

𝑐⋅(𝑛𝑥+𝑛𝑦)
2𝑛𝑥−1

)
2

⋅ 1
2𝑛𝑥−1

≈ 2𝑛𝑥 ∫
1

0
𝕒 (𝑐) ⋅ 2𝑛𝑥+1 ⋅

𝑛𝑥 + 𝑛𝑦
√2𝜋

𝑒−
1
2 (𝑐⋅(𝑛𝑥+𝑛𝑦))

2
𝑑𝑐

= 22𝑛𝑥+1 ⋅
𝑛𝑥 + 𝑛𝑦
√2𝜋

∫
1

0
𝕒 (𝑐) ⋅ 𝑒−

1
2 (𝑐⋅(𝑛𝑥+𝑛𝑦))

2
𝑑𝑐

This allows us to directly calculate the success probability9 of the Malviya algorithm for any random
function 𝑓 ∶ 𝔽𝑛𝑥2 ↦ 𝔽𝑛𝑦2 :

22𝑛𝑥−𝑛𝑦+1 ⋅
𝑛𝑥 + 𝑛𝑦
√2𝜋

∫
1

𝜏
𝑐2 ⋅ 𝑒−

1
2 (𝑐⋅(𝑛𝑥+𝑛𝑦))

2
𝑑𝑐 ≈ ℒ𝕡𝜏(𝑓)

This can be calculated using wolframalpha. I will omit the output here.
Unfortunately this integral can not be calculated analytically, but it can be approximated numerically.
However, doing this for 𝑛𝑥 = 𝑛𝑦 = 128 and 𝜏 = 0, I would expect the result to equal 1, which is not the
case. This means the hypothesis proposed in eq. (4.24) is wrong10. A Finding the correct formula will

9The notation ℒ𝕡𝜏(𝑓) will be introduced in the following section.
10Instead, replacing 22𝑛𝑥−𝑛𝑦+1 with 2 ⋅ (𝑛𝑥 + 𝑛𝑦)2 yields the expected results, but this might be a coincidence.

36

https://www.wolframalpha.com/input?i=integral+from+tau+to+1+of+%28c%5E2+*+e%5E%28-1%2F2+*+%28c*%28x%2By%29%29%5E2%29%29+dc


be very interesting future work as it later allows to approximate runtime of the Malviya algorithm for
schemes that require to allow plausible deniability as a cryptographic criterion.

4.3.5 In general
As seen in eq. (4.9) we measure any linear relation 𝛼𝛾𝛽 with probability

𝑝𝛼,𝛾,𝛽 =
|𝑐( ̄𝑡𝛼⧺𝛾,𝛽(𝑓))|2

2𝑛𝑐 (4.25)

Definition 4.3.13. We call an algorithm successful iff we measure any non-trivial (non-zero) approxima-
tion that holds true (or false) with probability 1

2
± 𝜏

Let 𝒮 be the set of all linear approximations that result in a successful algorithm if measured

𝒮 = {(𝛼 ‖ 𝛾 ‖ 𝛽) | 𝛽 ≠ 0, |𝑃(⟨(𝛼 ‖ 𝛾 ‖ 𝛽)|(𝑚 ‖ 𝑘 ‖ 𝑐)⟩ = 1) − 1/2| ≥ 𝜏}

We can now relate that to the “approximatibility” of 𝑓 as defined in section 4.3.2.
Lemma 4.3.14. For any 𝑓 ∶ 𝔽𝑛𝑚2 × 𝔽𝑛𝑘2 ↦ 𝔽𝑛𝑐2 and 𝑓′(𝑎 ⧺ 𝑏) ∶= 𝑓(𝑎, 𝑏) it holds that

|𝒮| = ℒ𝛿𝜏∗2𝑛𝑐 (𝑓
′)

Note that we used ℒ not the normalized ℒ∗.

Proof.

|||𝑃(⟨(𝛼 ‖ 𝛾 ‖ 𝛽)|(𝑚 ‖ 𝑘 ‖ 𝑐)⟩ = 1) − 1
2
||| ≥ 𝜏

⇔ |||
|𝑐( ̄𝑡𝛼⧺𝛾,𝛽(𝑓′))|

2𝑛𝑐 + 1
2 −

1
2
||| ≥ 𝜏

⇔
|𝑐( ̄𝑡𝛼⧺𝛾,𝛽(𝑓′))|

2𝑛𝑐 ≥ 𝜏
⇔ |𝑐( ̄𝑡𝛼⧺𝛾,𝛽(𝑓′))| ≥ 2𝑛𝑐𝜏
⇔ 𝛿𝜏∗2𝑛𝑐 (||𝑐( ̄𝑡𝛼⧺𝛾,𝛽(𝑓′))||) = 1

Because better approximations get measured more likely, the success probability of Malviya algorithm
is lower bounded by

𝑃(″𝑠𝑢𝑐𝑐𝑒𝑠𝑠″) ≥
ℒ𝛿𝜏∗2𝑛𝑐 (𝑓

′)
2𝑛𝑚+𝑛𝑘+𝑛𝑐 .

A better, more complicated bound is given by the following theorem:

Theorem 4.3.15. The success probability of Malviya algorithm is bounded by

𝑃(″𝑠𝑢𝑐𝑐𝑒𝑠𝑠″) ≥ ∑
(𝛼‖𝛾‖𝛽)∈𝒮

𝑝𝛼,𝛾,𝛽

I.e. the sum of all probabilities of measuring a linear approximation that results in a successful al-
gorithm. This success-rate can be directly converted into a measure of the “approximateability” of 𝑓
(similar to those defined in section 4.3.2) by using

𝕒(𝑥) = 𝕡𝜏(𝑥) ∶= {
0 if 𝑥 < 𝜏
𝑥2

2𝑛𝑦
else
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Corollary 4.3.15.1. The success probability of Malviya algorithm is given by

𝑃(″𝑠𝑢𝑐𝑐𝑒𝑠𝑠″) = ℒ𝕡𝜏(𝑓′) = ∑
𝑚𝑥 ,𝑚𝑦∈𝔽𝑛2

𝑚𝑦≠0

𝕡𝜏 (|𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓))|)
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Chapter 5

Applying Quantum Search

As this success probability is not good enough for most purposes, we will now look at how to increase
it. The most obvious way to do this is to simply repeat the algorithm multiple times and take the best
result. An obstacle using this approach is though, that it is not easy to verify or compare which result
was best (compare appendix A.1). Besides, this is neither very efficient as its success probability only
increases linearly with the amount of repetitions, nor does it guarantee a good result as it is still prob-
abilistic.

5.1 Grover Algorithm for Quantum Search
In some sense, we search for a specific input (masks) that results in a good approximation. The search
problem is famously solved by Grovers algorithm1 [26] which achieves a quadratic speedup compared
to the classical case. The classical case needs 𝒪 (𝑁) queries to find the solution, while Grover only
needs 𝒪 (√𝑁) queries. This cannot be achieved faster for black-boxed quantum oracles as shown by
the following lower bound.

5.1.1 Lower Bound for Quantum Search
As Grover’s algorithm finds a marked state in a superposition of all possible states, it needs some way
of knowing which state is marked. This is done by applying an oracle that marks this state by inverting
its amplitude, compare with 𝑉 𝑓 in section 3.4.1.1. This oracle will simply be called the oracle in this
section.

Theorem 5.1.1 (Lower Bound for Quantum Search [11]). Any quantum algorithm that solves the search
problem with certainty needs at leastΩ(√𝑁) applications of the oracle.
There are multiple different proofs for this theorem, e.g. [22] and [42, pp. 269-271].

Wewill not go into detail on the proof in this thesis, but as a sketch the proof consist of two parts:

1. The first part shows that to distinguish between 𝑁 elements with certainty, it has to hold that
∑�̄�∈{0,1}𝑛‖|𝜓�̄�𝑘⟩ − |𝜓𝑘⟩‖2 ≡ Ω(𝑁), where |𝜓�̄�𝑘⟩ denotes the state after running an algorithm using 𝑘
applications of the oracle (with ̄𝑥 being themarked element) and |𝜓𝑘⟩denotes the same algorithm,
but where the oracle has been replaced by the identity, i.e. no element is marked.

2. The second part shows that this difference is at most 4𝑘2.
1As Grovers Algorithm is only a special case, that is not applicable in this thesis, of Amplitude Amplification, which will be

described in section 5.2, a description of the Grover algorithm will be omitted here.
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Remarks on the lower bound regarding the complexity model

This however uses the oracle model (compare section 3.4.2.1) and therefor misses some possible con-
siderations. As quoted from [23, p.145]:

Remark: It is important to emphasize that concerning the scenario when the database is
virtual (e.g. a given function defines it and we do not need to build special hardware to
access the database) we are interested rather in the number of elementary gates imple-
menting the counting than in the number of applied Grover operators. As we learned at
the end of Section 6.2.4 the complexity can be expressed with𝒪 (log3(𝑁)) gates, which is a
significantly favorable metrics for complexity!

This however only holds for specific cases where𝑈𝑓 can be efficiently exponentiated, which is the case
for trivial and known 𝑈𝑓

2, but neither in general nor if 𝑈𝑓 is given as a black-box oracle.

If the implementation of 𝑈𝑓 is given this might be useful3 as it allows to optimize the circuit for the
specific𝑈𝑓. It might be the case though, that Grover oracles which mark only a single element cannot
be squared sub-linearly, or more generally the more elements are marked the more gates can be elimi-
nated. This hypothesis was not researched in this thesis, butmight be a topic for future research.

But a sublinear squaring of𝑈𝑓 would be considered an a priori promise to 𝑓 as it requires some special
properties that can then be exploited, if no promises are given any quantum algorithm can only achieve
a polynomial speedup compared to the classical case[9].

5.2 Amplitude Amplification
Grover’s algorithm can only be used to find a single marked element, but as we are looking for multiple
good approximations, we need amore general approach. Fortunately this exists and is calledAmplitude
Amplification [14]. It is a generalization of Grover’s algorithm and can be used to amplify the amplitude
of any state in a superposition. To bemore precise, it can solve the following problem in𝒪 (√𝑁) oracle
calls[31, p. 146]:

Problem 5.2.1 (Boosting). Given a measurement-free quantum algorithm represented by a unitary op-
erator 𝐴 ∈ ℂ2𝑛×2𝑛 as an oracle and a Boolean function 𝜌 ∶ 𝔽𝑛2 → 𝔽2 partitioning the canonical basis
vectors of ℂ2𝑛 . Let |Ψ⟩ ∶= 𝐴 |0⟩ be the output state after running the Algorithm, 𝑃𝑖 ∶= ∑𝑘∈𝜌−1(𝑖) |𝑘⟩ ⟨𝑘|
for 𝑖 ∈ 𝔽2 the projectors corresponding to these partitions and 𝑎 ∶= ⟨𝜓good|𝜓good⟩ ∶= ⟨Ψ| 𝑃†1 𝑃1 |Ψ⟩ ∈ [0, 1]
the success probability of 𝐴. We are looking for an algorithm that boosts that probability to 1.
Solving this problem the Amplitude Amplification algorithm uses the following efficent unitarity op-
erations:

Definition 5.2.1. The operators 𝑄, 𝑅2𝑛 , 𝑉𝜌 ∈ ℂ2𝑛×2𝑛 are defined for any 𝑥 ∈ {0, 1, ..., 2𝑛 − 1} and unitary
operator 𝐴 ∈ ℂ2𝑛×2𝑛 over

𝑄 ∶= −𝐴−1𝑅2𝑛𝐴𝑉𝜌, 𝑅2𝑛 |𝑥⟩ ∶= {− |𝑥⟩ 𝑥 = 0
|𝑥⟩ 𝑥 ≠ 0 and 𝑉𝜌 |𝑥⟩ ∶= (−1)𝜌(𝑥) |𝑥⟩ . (5.1)

Where −𝐴−1𝑅2𝑛𝐴 is the generalization of the Grover diffusion operator 𝐷, that does not depend on
the current search problem and 𝑉𝜌 is the interesting part, marking which states are “good”, by flipping
their amplitude. Creating 𝑉𝜌 is the main challenge and the focus of section 5.4.
The diffusion operation, and therefor 𝐴, on the other hand is interesting as well, it plays the following
role in the effect of 𝑄 [14]:

2Using a square and multiply algorithm for efficient exponentiation. This however requires𝑈2 to have the same complexity
(regarding amount of gates) as𝑈 , or at least have a sub-linear relation, which is usually not the case.

3Although the optimized qiskit.transpile function does not yield any benefits in my small empirical study.
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𝑄 |𝜓good⟩ = (1 − 2𝑎) |𝜓good⟩ − (2𝑎) |𝜓bad⟩
𝑄 |𝜓bad⟩ = 2(1 − 𝑎) |𝜓good⟩ + (1 − 2𝑎) |𝜓bad⟩

where |𝜓good⟩ and |𝜓bad⟩ are the good and bad states in accordance to eq. (5.3) respectively and 𝑎 is the
success probability of 𝐴, i.e. measuring a “good” state, as also used in problem 5.2.1.

Resulting in the following equation when applying 𝑄multiple times [15]:

𝑄𝑗𝐴 |0⟩ = 𝑎good𝑗 |𝜓good⟩ + 𝑎bad𝑗 |𝜓bad⟩

with

𝑎good𝑗 = 1
√𝑎

sin ((2𝑗 + 1) arcsin(√𝑎)) and therefor 𝑎bad𝑗 = 1
√1 − 𝑎

cos ((2𝑗 + 1) arcsin(√𝑎)) .

With that knowledge we can repeat 𝑄 a fixed amount of times when we know 𝑎, if that is not the
case, we can apply something similar to exponential search resulting in the algorithm shown in algo-
rithm 4.

Algorithm 4: Amplitude Amplification
input : A unitary operator 𝐴 ∈ ℂ2𝑛×2𝑛 , and a Boolean function 𝜌 ∶ 𝔽𝑛2 → 𝔽2. The success

probability 𝑎 = ⟨0| 𝐴†𝑃†1 𝑃1𝐴 |0⟩ ∈ (0, 1) of 𝐴 is not known.
ℓ ← 0, 𝑧 ← 0 and choose 𝑐 ∈ (1, 2);
while 𝜌(𝑧) ≠ 1 do

ℓ ← ℓ + 1;𝑀 ← ⌈𝑐ℓ⌉;
|𝜓⟩ ← 𝐴 |0⟩;
choose integer 𝑗 ∈ [1,𝑀] at random ;
|𝜓⟩ ← 𝑄𝑗 |𝜓⟩;
Measure |𝜓⟩ with respect to the standard basis to get 𝑧;

end
output: 𝑧

This algorithm is inherently probabilistic, but to halt and get the expected result it needs an expected
runtime of 𝒪 (√

1
𝑎
) (in the oracle-model) [14].

5.2.1 Eliminating the Trivial Solution
As Malviya et al. stated in their paper, the probability of measuring the trivial approximation with a
chance of 6.25%was already quite high. With the hypothesis of this chance increasing with the amount
of qubits, as other approximations get worse while this stays perfect, this would not be a good sign for
the success rate of the algorithm.
Luckily this hypothesis is false as shown in section 4.3.1. It decreases exponentially with the amount
of output bits of 𝑓, i.e. for 𝑓 ∶ 𝔽𝑛𝑚+𝑛𝑘

2 ↦ 𝔽𝑛𝑐2 the chance of measuring the trivial approximation after
running the Malviya algorithm is 1/2𝑛𝑐 .
As this is nearly negligible, we will not go into much detail here, but we could further decrease this
chance by using something similar to an inverse Grover that decreases the amplitude of a selected state
instead of increasing it. Fortunately with the knowledge of amplitude amplification, an inverse Grover
is easy to construct as amplitude reduction and amplification is congruent to each other by simply
swapping the good and bad states.
As the good states get pushed to certainty, the bad states get squished to amplitude zero, which is ex-
actly what we want.
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As the success probability of the single bad state4 (the trivial mask) and therefor 𝑎 = 1− 1/2𝑛𝑐 is known,
we can employ a generalized version of amplitude amplification to increase the amplitude of all good
states (except the trivial mask) and therefor decrease the amplitude of the bad trivial mask-state to zero.
According to Brassard et al. the algorithm starts similar to algorithm 4 with

𝑗 ∶= ⌊ 𝜋
4 arcsin(√𝑎)

− 1
2⌋

Applications of 𝑄, which in this case (since 𝑛 ≥ log
4
3
log 2) is always zero, and then continues with a

generalized step, that also needs our subroutine unitaries to be generalized:

Definition 5.2.2. The operators 𝑄(𝜙,𝜑), 𝑅(𝜙)2𝑛 , 𝑉
(𝜑)
𝜌 ∈ ℂ2𝑛×2𝑛 are defined for any 𝑥 ∈ {0, 1, ..., 2𝑛 − 1} and

unitary operator 𝐴 ∈ ℂ2𝑛×2𝑛 over

𝑄(𝜙,𝜑) ∶= −𝐴−1𝑅(𝜙)2𝑛 𝐴𝑉
(𝜑)
𝜌 , 𝑅(𝜙)2𝑛 |𝑥⟩ ∶= {𝑒

𝑖𝜙 |𝑥⟩ 𝑥 = 0
|𝑥⟩ 𝑥 ≠ 0 and 𝑉 (𝜑)

𝜌 |𝑥⟩ ∶= {𝑒
𝑖𝜙 |𝑥⟩ 𝜌(𝑥) = 1
|𝑥⟩ 𝜌(𝑥) = 0 . (5.2)

With this partial applications of 𝑄 are possible. Choosing 𝜑 and 𝜙 s.t. [14, eq. 11]

𝑒𝑖𝜑(1 − 𝑒𝑖𝜙)𝑎 = 𝑎 − (𝑎 − 1)𝑒𝑖𝜙

holds, allows us to eliminate the trivial approximation with a single 𝑄(𝜙,𝜑)-oracle call.
This is∈ 𝒪 (1) and guarantees that the trivial approximation is not measured, but it does not guarantee
that the algorithm is successful, as other bad non-trivial approximations still have non-zero amplitude.

5.3 Amplitude-Amplification of “good” Approximations
Eliminating only one, knownbad state as described in the previous section is a rather simple procedure.
But for a successful algorithm this would be insufficient, as there are still other bad states that can be
measured.

As eliminating all “bad” states is equivalent to amplifying all “good” states, we will from now on focus
on the latter. The amplitude amplification algorithm requires a partition function 𝜌 that partitions the
canonical basis vectors of ℂ2𝑛 into good and bad states. As the goodness of a state is defined by the
approximation (𝑚𝑥, 𝑚𝑦) it represents, whose goodness is well-defined via |𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓))|, we can reuse5
our threshold activation function 𝛿𝜏 as partition6 function 𝜌. This allows us to employ amplitude am-
plification, boosting the amplitudes of states that represent approximations with a high enough corre-
lation, while eliminating the bad states, i.e. approximations with a correlation lower than 𝜏.

Creating an oracle that does something similar to |𝑥⟩ ↦ (−1)𝛿𝜏|𝑐( ̄𝑡𝑚𝑥,𝑚𝑦 (𝑓,𝑥))| |𝑥⟩ to be used in amplitude
amplification efficiently is not trivial, and will be the focus of the following section.

5.4 Creating the Oracle
As mentioned in section 5.2 the amplification operator can be split into the labelling and diffusion
operators. While the diffusion operator is the same for every oracle, the labelling operator is different for
every oracle and needs to be constructed individually depending on which elements are “good”.

4There might be multiple bad states, but only one with non-zero probability.
5Obviously the codomain has to be changed fromℝ to𝔽2, but as the image of𝛿𝜏 only has cardinality 2 that is straight forward.
6It is possible to not use partition functions for amplitude amplification, but directly use the goodness of an approximation

and boost those more, that have higher goodness, as described in [48], but that is out of the scope for this thesis and might be
part of future work.

6Most graphics in this section where generated with my own code, provided at https://github.com/HannesGitH/
MA-public/blob/main/creating_the_oracle_stuff.ipynb.

42

https://github.com/HannesGitH/MA-public/blob/main/creating_the_oracle_stuff.ipynb
https://github.com/HannesGitH/MA-public/blob/main/creating_the_oracle_stuff.ipynb


We have already established, that good states are those in 𝒮, i.e. those with 𝛿𝜏 (||𝑐( ̄𝑡𝛼⧺𝛾,𝛽(𝑓′))||) = 1, but
equivalently we can define that 𝜂 is a good approximation of a given function 𝑓 if it holds true for a
certain amount of inputs.

As visible in fig. 5.2 a possible labelling operator then consists of two parts:

1. A counting oracle 𝑈# ∗ that counts for how many inputs the approximation holds true.
This is similar to calculating the correlation.

2. Amarking oracle𝑈𝜀 that decideswhether this count is greater than a threshold 𝜀 or not andmarks
the corresponding elements accordingly by inverting an ancilla qubit, which in turn triggers a z-
flip labelling of elements that are “good” while leaving “bad” ones unchanged.
This is similar to using 𝛿𝜏 on the previously calculated correlation.

Themarking oracle is easily constructed by using the quantum variant of the classical digital compara-
tor as shown in fig. 5.1.

Constructing the counting operator on the other hand is more complex and the main focus of the
following sections, providing different approaches to construct it. For ease of readability they will first
be introduced in a simplified non-vectorial setting, before being extended to the full cryptographic
setting in section 5.5.

5.4.1 Using basic quantum counting
The most straight forward way to construct the labelling operator is to use quantum counting. The
𝑈#-gate (*) in fig. 5.2 would be replaced by a quantum counting algorithm that counts on how many
plaintext, key, ciphertext tupels a given approximation 𝜂 would hold true.

5.4.1.1 Basic Quantum Counting in general

This subsection introduces the quantumcounting algorithmas described in [14], whichwill then trans-
formed to be used as 𝑈# *.
Recall, 𝑁 ≔ 2𝑛, 𝑛 ∈ ℕ≥1. For any Boolean function 𝑓∶ 𝔽𝑛2 → 𝔽2 with 𝑐 ≔ |𝑓−1(1)| being the count of
elements on which 𝑓 evaluates true, the quantum counting algorithm can estimate 𝑐 when given the
corresponding unitary oracle 𝑈𝑓 ∶ ℂ𝑁⋅2 → ℂ𝑁⋅2, |𝑥⟩ |𝑦⟩ ↦ |𝑥⟩ |𝑓(𝑥) ⊕ 𝑦⟩ as an input. The precision of
the estimate can be tuned to a multiplicative error metaparameter 𝜀 which is antiproportional to the
complexity of the quantum counting algorithm.

As 𝑓 induces a partition on its domain 𝔽𝑛2 with cardinality 2, namely:

𝑓−1(0) ∶= {𝑥|𝑓(𝑥) = 0} and 𝑓−1(1) ∶= {𝑥|𝑓(𝑥) = 1},

the corresponding projectors (for “good” and “bad” elements) can be defined as:

𝑃bad ∶= ∑
𝑥∈𝑓−1(0)

|𝑥⟩ ⟨𝑥| and 𝑃good ∶= ∑
𝑥∈𝑓−1(1)

|𝑥⟩ ⟨𝑥| .

These span the 2-dimensional subspace of “bad” and “good” states:

|𝜓bad⟩ ∶= 𝑃bad |𝜓⟩ and |𝜓good⟩ ∶= 𝑃good |𝜓⟩ ; |𝜓bad⟩ ∪ |𝜓good⟩ = |𝜓⟩ . (5.3)

With usage of an ancilla qubit these states are easily created with following simple projectors (the
“good” states are those with ancilla being 1 and the “bad” ones those with 0):

𝑃+bad ∶= ∑
𝑖
𝑎𝑖 |𝑖⟩ |0⟩ and 𝑃+good ∶= ∑

𝑖
𝑎𝑖 |𝑖⟩ |1⟩ ,
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⋮ ⋱ ⋱
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input: 𝜀

input: |𝑐⟩

ancilla
|0⟩ → |𝜀 ∧ 𝑐⟩

output: |0⟩ 𝑋 |𝜀 ∧ 𝑐⟩

Figure 5.1: Quantum “≥ 𝜀”-comparator, implementation of 𝑈𝜀 from fig. 5.2.
The first part (left of the slice) only fills an ancilla register with the 𝜀 ∧ 𝑐 bitstring. That is needed for
the second part to only flip the output after the first unequal bit and not flip it back when another less
significant (and therefor irrelevant) bit mismatches.
This simply shows how to realize the standard oracle definition |𝜀⟩ |𝑐⟩ |𝑏⟩ ↦ |𝜀⟩ |𝑐⟩ |𝑏 ⊕ 𝑓(𝜀, 𝑐)⟩ with
𝑓(𝜀, 𝑐) = 𝜀 ∧ 𝑐 and 𝑏 being the output qubit.
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labelling phase oracle
Input
𝑛 qubits

𝑈# ∗

Output
𝑛 qubits

|0⟩⊗𝑛

𝑈𝜀

|0⟩⊗1 𝜎𝑍

𝜂 𝜂

count 𝑐 count 𝑐

𝑐 ≥ 𝜀

Figure 5.2: Possible structure for decidingwhich elements are “good” depending onwhether the output
𝑐 of the counting oracle 𝑈# is greater than a threshold 𝜀 or not and labelling them with an amplitude
inversion accordingly. This circuit is only a schematic visualization as the trashing of ancilla qubits is
more complicated in reality. A more realistic implementation is depicted in fig. 5.3.

labelling phase oracle

Input
𝑛 qubits

𝑈# ∗ (𝑈# ∗)−1
Output
𝑛 qubits

… |0⟩⊗𝑛

𝑈𝜀 𝑈−1
𝜀

|0⟩⊗𝑛 …

… |0⟩⊗1 𝜎𝑍 |0⟩⊗1 …

𝜂 𝜂 𝜂 𝜂

count 𝑐 count 𝑐 count 𝑐 count 𝑐 0

𝑐 ≥ 𝜀

Figure 5.3: As trashing qubits, i.e. disregarding them has the same effect as measuring them, which
in turn would destroy the superposition, the ancilla qubits need to be uncomputed to |0⟩ after usage
[42, 187]. This depicts how fig. 5.2 would be implemented in practice. Similar procedures have to be
employed for all other circuits using the trash symbol.
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|𝜓bad⟩

|𝜓good⟩

|𝜓⟩ ∶= 𝐻 |0⟩

𝜃𝜓

Figure 5.4: visualization of |𝜓⟩ as a vector in the 2-dimensional subspace of good and bad states and its
relation to 𝜃𝜓

In case of an equally distributed superposition his can be simplified to

𝑃+bad ∶= |+⟩ |0⟩ and 𝑃+good ∶= |+⟩ |1⟩

to then result in the following identity7:

|𝜓bad⟩ ⊗ |0⟩ = 𝑃+bad ⋅ 𝑈𝑓 ⋅ (𝐻 ⊗ 𝐼) |0⟩ and |𝜓good⟩ ⊗ |1⟩ = 𝑃+good ⋅ 𝑈𝑓 ⋅ (𝐻 ⊗ 𝐼) |0⟩

Since

⟨𝜓good|𝜓good⟩ =
𝑐
𝑁 (5.4)

it suffices to estimate the amplitude of |𝜓good⟩ to get an estimate for 𝑐.
As |𝜓good⟩ and |𝜓bad⟩ are orthogonal, the angle 𝜃𝜓 as shown in fig. 5.4 can be described as:

𝜃𝜓 = arcsin (||⟨𝜓good| √𝑁 ∗ 𝐻 |0⟩||) (5.5)

= arcsin (||⟨𝜓good|𝜓good⟩||) (5.6)

= arcsin (√⟨𝜓good|𝜓good⟩) (5.7)

= arccos (√⟨𝜓bad|𝜓bad⟩) (5.8)

Conveniently this angle is related to the change through the corresponding (efficiently implementable)
Grover operator

𝐺 ∶= 𝐷 ⋅ 𝑉 𝑓

by a factor of two[42, p. 253]. Compare fig. 5.5. In this case 𝑉 𝑓 |𝑥⟩ ∶= (−1)𝑓(𝑥) |𝑥⟩ is the 𝑧-flip-oracle
corresponding to 𝑓 and 𝐷 is the Grover diffusion operator.

The change of angle of an eigenstate through a quantum oracle (in this case𝐺) can be estimated by the
quantum phase estimation (QPE) algorithm8, which is described in appendix B.2.

The problem is though, that |𝜓⟩ is not (necessarily) an eigenstate of𝐺. But as described in [42, pp. 224-
225] the QPE algorithm can be applied to a superposition (or linear combination) of eigenstates {𝜓𝑖} of

7This is the variant of equal superposition (as caused by the𝐻 gate), but it can simply be transformed to any other superpo-
sition by applying a corresponding unitary gate instead.

8Using QPE for quantum counting is not a new idea as mentioned by the following quotes: “Quantum counting is an
application of the phase estimation procedure of Section 5.2 to estimate the eigenvalues of the Grover iteration G”[42, p.
262]; “The goal of amplitude estimation is, in its simplest form, to estimate the unknown parameter 𝜃 contained in the state
|𝜙⟩ = sin𝜃 |𝑔𝑜𝑜𝑑⟩ + cos𝜃 |𝑏𝑎𝑑⟩”[49].
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|𝜓bad⟩

|𝜓good⟩

|𝜓⟩ ∶= 𝐻 |0⟩

𝐺 |𝜓⟩

2𝜃𝜓

Figure 5.5: visualization of |𝜓⟩ as a vector in the 2-dimensional subspace of good and bad states and its
relation to 𝜃𝜓 as interpreted as the phase estimation of the corresponding Grover operator

𝐺 and ends in a state with equal superposition between their corresponding approximated eigenphases
{𝑒2𝜋𝑖𝜃𝑖 }:

𝑄𝑃𝐸 (∑
𝑖
𝛼𝑖 |𝜓𝑖⟩) = ∑

𝑖
𝛼𝑖 |𝜓𝑖⟩ | ̃𝜃𝑖⟩

The two eigenstates of 𝐺 are |𝜓good⟩ and |𝜓bad⟩ and since they are orthagonal to each other their phases
(of the corresponding eigenvalues) are negated to each other: 𝜃𝜓good = −𝜃𝜓bad[14, p. 15]. So measuring
either of these will result in knowing 𝜃𝜓.

It has to be remarked though, that the canonical QPE outputs the eigenphase which in this case is 2𝜃𝜓
2𝜋

due to the Grover operator rotating by 2𝜃 and the QPE outputting the eigenphase instead of the angle
(factor of 2𝜋).
After that the quantumcounting algorithmcanoutput 𝑐 = sin(𝜃𝜓)2∗𝑁 as an inversion of eq. (5.7).

5.4.1.2 Success probability

Corollary 5.4.0.1. The success probability of the quantum counting algorithm is at least

Pr[“success”] ∶= Pr [| ̃𝑐 − 𝑐| ≤ 𝜀] ≥ 1 − 1
2𝑡+1arcsin (√

𝜀
𝜋𝑁

) − 4

Proof. 9 As seen towards the end of section 5.4.1.1 the algorithm outputs 𝑐 = sin(𝜃𝜓) ∗𝑁 and uses QPE
to get ̃𝜃𝜓. QPE (compare appendix B.2) in turn has success probability

Pr[“success”] ∶= Pr [|
̃𝜃𝜓
𝜋 −

𝜃𝜓
𝜋 | ≤ 1

2𝜏 ] ≥ 1 − 1
2𝑡−𝜏+1 − 4

Converting this to getting within a general error 𝜀 results in

Pr[“success”] ∶= Pr [| ̃𝜃𝜓 − 𝜃𝜓| ≤ 𝜀] ≥ 1 − 1
2𝑡+1 𝜀

𝜋
− 4

Directly applying that to our case of 𝑐 = sin(𝜃𝜓) ∗ 𝑁 results in

Pr[“success”] ∶= Pr [| arcsin (√
̃𝑐

𝑁 ) − arcsin (√
𝑐
𝑁 ) | ≤ 𝜀] ≥ 1 − 1

2𝑡+1 𝜀
𝜋
− 4

9This bound (as shown in fig. 5.6) is much tighter than the previously known bound provided by Brassard et al. (corol-
lary 5.4.0.2), this seems highly unlikely, so chances are this proof might not be correct.
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Since arcsin and the square root is monotonically increasing between 0 and 1 and 0 ≤ 𝑐
𝑁
≤ 1 we can

apply it to the inequality and get

Pr[“success”] ∶= Pr [| ̃𝑐 − 𝑐| ≤ 𝜀] ≥ 1 − 1
2𝑡+1arcsin (√

𝜀
𝜋𝑁

) − 4

This is already a useful result that allows to balance success probability and precision by choosing the
number of counting qubits 𝑡 and the error 𝜀 accordingly. Additionally, the runtime is directly influenced
by 𝑡10, so the runtime can be tuned as well.
As this bound is suspiciously more tight than the one previously provided by Brassard et al., it is worth
comparing them und using their estimate as well.

Corollary 5.4.0.2. The success probability of the quantum counting algorithm is also at least

Pr[“success”] ∶= Pr [| ̃𝑐 − 𝑐| ≤ 2𝜋𝑘√𝑐(𝑁 − 𝑐)
2𝑡 + 𝜋2𝑘2 𝑁22𝑡 ] ≥ 1 − 1

2𝑘 − 2

Proof. [14, p. 16] where𝑀 > 𝑗 is a strict upper bound on the maximum exponentiation of our oracle:
𝑈𝑗 [14, pp. 15-16] as used in fig. B.2. Therefor𝑀 = 2𝑡.

As shown in fig. 5.6 this bound is worse than my bound. It has the additional disadvantage, that it
depends on the actual value of 𝑐 which is unknown to the attacker and is parameterized by 𝑘 which is
neither directly the success probability nor the precision.

100 101 102

0.8

0.9

1

𝜀

Pr
[“
su
cc
es
s”
]≥

Figure 5.6: Comparison of Brassard et al.’s probability bound (orange) and mine (blue):
Absolute error vs. success probability with 2 additional counting bits and 𝑁 = 256, 𝑐 = 15.

5.4.1.3 Quantum Counting Linear Approximation Goodness

In our case we do not want to check any specific function, rather a family, parameterized by 𝜂: 𝑓𝜂(𝑥) ∶=
⟨𝜂|𝑥⟩ and get its count 𝑐𝜂 ∶= |𝑓−1𝜂 (1)|.

So instead of the normal 𝑗-controlled (𝐷𝑉 𝑓)𝑗 used in quantum counting we use a bigger ((𝐼⊗𝐷)𝑉 𝑓𝜂)𝑗
with 𝑉 𝑓𝜂 |𝜂⟩ |𝑥⟩ ↦ (−1)⟨𝜂|𝑥⟩ |𝜂⟩ |𝑥⟩, as shown in fig. 5.7.

10As mentioned in section 5.4.1.4 it depends on the attack model but in most cases it has to be considered𝒪 (2𝑡).
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|𝜂⟩
𝑉 𝑓𝜂

|𝑥⟩ 𝐷

𝐺𝜂

(a) Circuit for 𝐺𝜂 ∶= (𝐼 ⊗ 𝐷)𝑉 𝑓𝜂

𝑗-th control qubit

|𝜂⟩
𝐺𝜂𝑗

|𝑥⟩

(b) Circuit for 𝑗-controlled 𝐺𝜂

Figure 5.7: Circuit for ((𝐼 ⊗ 𝐷)𝑉 𝑓𝜂)𝑗

And therefor theΔused in theQPEprocesswill also do the transform |𝑗⟩ |𝜂⟩ |𝑥⟩ ↦ |𝑗⟩ (𝐺𝑗
𝜂 |𝜂⟩ |𝑥⟩).

𝑈# ∗

|𝜂⟩

Δ(𝐺𝜂)|𝑥⟩ 𝐻

|𝑗⟩ ∶= |0⟩ 𝐻 ℚ𝔽𝕋†

Figure 5.8: Circuit for 𝑈# ∗ using quantum counting

An analysis will be omitted here, but the effect of applying this new 𝑈# ∗ will be |𝜂⟩ |0⟩ ↦ |𝜂⟩ |𝑐𝜂⟩ with
the same complexity as in the general case, except the need of an additional register of length 𝑛.

5.4.1.4 Oracle access and runtime

As also mentioned in lemma B.2.2 the runtime of this basic quantum counting algorithm greatly de-
pends on the chosen attack model. Three models come to mind, which are listed in table 5.1.

Name Description Attacker can access Runtime in oracle-model

A0

The simplest and arguably most straight-forward
form iswhen the attacker can only access𝑈 itself.
This results in the weakest security-model as the
attacker is quite restricted.

𝑈 𝒪 (2𝑡)

A2
The most loose form is when the attacker can di-
rectly access the conditionally exponentiated or-
acle Λ(𝑈) as defined in definition B.2.1.

|𝑗⟩ |𝑦⟩ ↦ |𝑗⟩ (𝑈𝑗 |𝑦⟩) 𝒪 (1)

A1

In another variant that sits in between the previ-
ous, more obvious ones, the attackee has to pro-
vide all 𝑈2𝑖 . This would allow to skip the lower
𝑘 exponentiations {𝑈20 ,⋯ ,𝑈2𝑘−1 } with a loss of
precision in exchange for a direct linear speedup
resulting in a runtime of 𝒪 (𝑡 − 𝑘).

𝑖 ↦ 𝑈2𝑖 𝒪 (𝑡)

Table 5.1: Multiple attack models on exponentiating 𝑈 and their corresponding runtimes.

If, rather arbitrarily, the counting register11 is chosen to be half the size of the function register12, the
11Compare estimation register in fig. B.1.
12Also compare fig. B.1.
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error results to be [14, p. 21] :

| ̃𝑐 − 𝑐| = 𝜀𝑡≔ 𝑛
2
< 2𝜋√

𝑐(𝑁 − 𝑐)
2𝑛 + 11.

A short analysis of this choice is depicted in fig. 5.9.

0 2 4 6
⋅104

11

12

13

14

𝑐

𝜀

(a) Chart of upper error bound in relationship
to the actual count 𝑐 for 𝑁 = 65536.

Attack Class Runtime with 𝜀𝑡≔ 𝑛
2

A0 𝒪 (2
𝑡
2 ) = 𝒪 (√𝑁)

A1 𝒪 (𝑛
2
)

A2 𝒪 (1)
(b) Runtime table for a counting register half
the size of the function register.

Figure 5.9: Analysis of error and runtime when choosing 𝑡 ≔ 𝑛
2
.

5.4.2 Optimized quantum counting
The next idea, proposed by Brassard et al. in [14], is, that in many cases the exact value of 𝑐 is not
needed, but only an approximation. It is based on the observation that ̃𝑐 is likely zero iff 𝑡 is chosen s.t.
2𝑡 ∈ 𝑜 (√

𝑁
𝑐
) ⇔ 𝑡 ∈ 𝑜 (𝑛 − log(𝑐)) or in other words the approximated count is expected to be zero iff

the counting register is less than half the size of the function register minus the logarithm of the actual
count.

So the algorithm outputs zero if the actual count is overestimated and the counting register is not
precise enough to detect it.

This can be used to optimize the previous algorithm by choosing 𝑡 s.t. it is just big enough to detect the
actual count. As 𝑐 is unknown though, 𝑡 is chosen to be 0 and linearly increased, s.t. the approximatible
count increases exponentially, similar to exponential search. This new algorithm is described at the top
of [14, p. 22] and will be called the basic approximate count algorithm here as well.

Unfortunately this algorithm uses measurements in between and therefor can not be simply repre-
sented as a unitary operator. Therefor it and its derivations can not be used as an oracle as they are
currently defined in a straight forward manner. But as it can still be used as-is to e.g. verify the “good-
ness” of a specific approximation (as done in appendix A.1) it will still be covered here for completeness
reasons.

Theorem 5.4.1. The basic approximate count algorithm outputs an approximation ̃𝑐 to 𝑐with error 𝜀with
probability at least 2

3
using a runtime in

Θ(√𝑐𝑁𝜀 )

in the A0 model.

Proof. Follows from Theorem 15 in [14, p. 22] by substituting their 𝜀 with our 𝜀
𝑐
(and their 𝑡 with our

𝑐).

Remark 5.4.2. This algorithm is optimal for any fixed 𝜀 [14, p. 23].
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They also provided a generally optimal algorithm (not only for fixed 𝜀) for approximate quantum count-
ing which will not be detailed here as its runtime of

Θ(
√

𝑁
⌊𝜀⌋ + 1 +√

𝑐(𝑁 − 𝑐)
⌊𝜀⌋ + 1 )

in the A0 model is only marginally better, as visible in fig. 5.10.
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Figure 5.10: Chart of runtime of Brassard et al.’s approximate counting algorithm in relation to the
actual count 𝑐 for𝑁 = 65536 and 𝜀 = 25 . The here discussed variant in blue and the optimized variant
in orange.

As a special case of this approximate counting it might be interesting to consider the case of 𝜀 = 0 13

i.e. exact counting. Their runtimes are depicted in fig. 5.11.

Weirdly the exact counting algorithm provided by Brassard et al. performs asymptically worse in rela-
tion to 𝑐 than both their optimized and unoptimized approximate counting algorithms with a nearly
zero error. In relation to 𝑁 they all perform similarly.
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Figure 5.11: Chart of runtime of Brassard et al.’s approximate counting algorithm in relation to the
actual count 𝑐 for 𝑁 = 65536 and 𝜀 = 0.35 . The here discussed variant in blue and the optimized
variant in orange. This time compared to the runtime of the exact counting algorithm [14, pp. 23-24]
in green.

13The unoptimized variant has 𝜀 > 0 as a precondition, but as 𝑐 is an integer we can set 𝜀 ≔ 1
3
≤ 1

2
to still get the correct

result. Similar with the optimized algorithm which has a precondition of 𝑐
3𝑁

< 𝜀, also allowing 𝜀 ≔ 1
3
≤ 1

2
since 𝑐 ≤ 𝑁 to get

the correct integer.
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𝑈# (*)
𝜂

𝑛 qubits
𝑈�̂�𝑓

𝜂
𝑛 qubits

|0⟩⊗𝑛 𝐻 𝑐

𝜂 𝜂

|𝑥⟩ (−1)⟨𝜂|𝑥⟩⊕𝑓(𝑥) |𝑥⟩

(a) Possible Circuit for 𝑈#

𝑈�̂�𝑓 ∶ |𝜂⟩ |𝑥⟩ ↦ |𝜂⟩ (−1)⟨𝜂|𝑥⟩⊕𝑓(𝑥) |𝑥⟩

(b) Definition of 𝑈�̂�𝑓

Figure 5.12: 𝑈# with a direct Walsh transform

5.4.3 Standalone oracle
As an alternate approach to the rather inefficient14 quantum counting, we could replace the counting
oracle 𝑈# (*) with a custom-made standalone oracle specific for this use-case.

5.4.3.1 Direct Walsh transform

An important observation is, that according to corollary 3.2.3.1 the “goodness” of a function 𝑓 is en-
coded in the Walsh transform of 𝑓. With the following lemma we can also directly reuse the threshold
oracle (𝑈𝜀 in fig. 5.2).
Lemma 5.4.3. Given 𝑓 ∈ 𝐹(𝔽𝑛2 , 𝔽2) and 𝑐 as used in eq. (5.4) being the amount of times the linear approx-
imation 𝜂 holds true, it holds that

̂𝜒𝑓(𝜂) + 2𝑛
2 = (𝐶𝑜𝑟𝑟( ̄𝑡𝜂,1(𝑓)) + 1) ⋅ 2

𝑛

2 = 𝑐.

That means we can either transform the output of our Walsh transform to the amount of good states
or choose 𝜀 to be 𝜀𝑐 ⋅

2
2𝑛
− 1 with 𝜀𝑐 being the threshold used in section 5.4.115.

One might be tempted to think that Walsh transformation is what a quantum computer is especially
good at and construct our oracle as done in fig. 5.12, but as the following analysis shows we cannot
simply use the quantumWalsh transform as a standalone oracle.

Analysis

Before applying the 𝑈�̂�𝑓 -gate we have the following state:

|Φ0⟩ = |𝜂⟩ |+⟩⊗𝑛

= ∑
𝑥∈𝔽𝑛2

|𝜂⟩ |𝑥⟩ (5.9)

Which gets mapped by 𝑈�̂�𝑓 to:

|Φ1⟩ = ∑
𝑥∈𝔽𝑛2

|𝜂⟩ (−1)⟨𝜂|𝑥⟩⊕𝑓(𝑥) |𝑥⟩

= |𝜂⟩ ∑
𝑥∈𝔽𝑛2

(−1)⟨𝜂|𝑥⟩⊕𝑓(𝑥) |𝑥⟩
(5.10)

Now the “goodness” is encoded in the amplitude again (which does not help, since that cannot directly
be used). Getting it out would again require quantum counting, so there is no benefit.

14I.e. still exponential runtime in regard to the function or counting register size in the A0 model.
15While the latter seams easier, we would have to modify the threshold oracle as its current implementation only works for

integers. Likely its construction would then be similar to the first approach.
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1-bit full adder
|𝑏1⟩ |𝑏1⟩

|𝑏2⟩ |𝑏2⟩

|𝑐𝑖𝑛⟩ |𝑐𝑜𝑢𝑡⟩

|0⟩ |𝑠⟩

Figure 5.13: 1-bit full adder (1bfa) as a quantum circuit. 𝑏1 and 𝑏2 represent the input bits, while
𝑐𝑖𝑛 is another input bit used as the carry over from the previous full adder (compare fig. 5.15), 𝑠 ∶=
𝑏1⊕𝑏2⊕ 𝑐𝑖𝑛 is their sum and 𝑐𝑜𝑢𝑡 ∶= 𝑎+ 𝑏 + 𝑐𝑖𝑛 ≥ 2 mod 2 is the output carry bit that is true exactly
when more than one input is true. The correctness of this circuit can be simply evaluated by checking
all possible inputs and comparing to the truth table of the classic full bit adder.

But as described in section 4.1 the Walsh transform can be computed classically. That also means
its circuit can be mapped to a quantum circuit and executed on a quantum computer as descibed in
appendix C and [38, chapter 8].

There are two majorly different approaches classically used, the naive approach and the fast wlash-
hadamard transform (fwht). Both are discribed in the following sections.

5.4.3.2 Naive approach

The naive variant would work via a direct implementation of the definition of the walsh transform
as described in definition 3.1.6. This would include a summation of 2𝑛 terms, per possible input 𝜂.
Calculating all possible ̂𝜒(𝜂) would therefor take 𝒪 (22𝑛) additions.
As the direct convertion of that algorithm to quantumhardwarewould not need to calculate all possible
2𝑛 values in sequence, but in superposition its complexity would only be in 𝒪 (2𝑛)16.
A description of how to convert that calculation to quantumhardwarewill follow in thenext parts.

Converting to Quantum Hardware

Arguably the main part of the naive approach is a summation of 2𝑛 terms therefor we would need to
implement a quantum adder.

Building this adder takes multiple steps. Starting with the quantum version of the 1-bit full adder,
whose circuit is depicted in fig. 5.13. Notice how in contrast to the classical version which has three
inputs and two outputs, the quantum version has four inputs and four outputs. That is because in
quantum computing information can neither be created nor destroyed, that means the input has to be
reconstructible from the output. To be precise, the transformation has to be unitary. But we can see
that if we would e.g. override 𝑏 with 𝑠 we could not reconstruct the input if the output is 𝑠 = 0 and
𝑐𝑜𝑢𝑡 = 1, as we would not knowwhether 𝑏 or 𝑐𝑖𝑛 was true, analogously if we pass 𝑏 and override 𝑎with
𝑠.
𝑛 of these 1-bit full adders can then be chained together to form a ripple carry binary adder as depicted
in fig. 5.15 which can add two 𝑛-bit bit-strings representing two natural numbers17. As bit-strings
can either be interpreted as having the most significant bit first or last (or in case of quantum circuits
at the top or the bottom respectively) there are two variants of this addition circuit, the big-endian
and the little-endian variant, depicted in fig. 5.15 and fig. 5.14 respectively. This thesis primarily uses
the big-endian variant (compare e.g. algorithm 10), but the little-endian variant is also depicted for
completeness. This circuit, when used as a building block, will simply be called adder.

16The output would as well be in a corresponding superposition and therefor not easily usable/ measurable, but that is fine
for our use-case.

17Or integers, if represented using the 2’s complement.
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ripple carry binary adder (little endian)

…

…

…

…

…

…

…

…

…

…

|𝑎⟩

𝑎0

1𝑏𝑓𝑎

|𝑎⟩
𝑎1

1𝑏𝑓𝑎

⋮

𝑎𝑛−1

1𝑏𝑓𝑎

|𝑏⟩

𝑏0

|𝑏⟩𝑏1
⋮

𝑏𝑛−1

carry: |0⟩

|0⟩
|𝑎 + 𝑏⟩⋮

Figure 5.14: Binary addition circuit for two n-bit numbers, in this case using the little endian repre-
sentation which e.g. means 𝑎 = ∑𝑛−1

𝑖=0 2𝑖𝑎𝑖 or that the most significant bit is below the less significant
ones.
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ripple carry binary adder (big endian)

…

…

…

…

…

…

…

…

…

…

|𝑎⟩

𝑎0

1𝑏𝑓𝑎

|𝑎⟩
𝑎1

1𝑏𝑓𝑎

⋮

𝑎𝑛−1

1𝑏𝑓𝑎

|𝑏⟩

𝑏0

|𝑏⟩𝑏1
⋮

𝑏𝑛−1

carry: |0⟩

|𝑎 + 𝑏⟩

|0⟩
⋮

Figure 5.15: Binary addition circuit for two n-bit numbers, in this case using the big endian represen-
tation which e.g. means 𝑎 = ∑𝑛−1

𝑖=0 2𝑖𝑎𝑛−𝑖 or that the most significant bit is above the rest.
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sum_loop:
add al, [esi] ; Add the value in the array to the accumulator
inc esi ; Point to the next element in the array
loop sum_loop ; Repeat the loop until ecx (array_size) becomes 0

Listing 5.1: Example assembly code for a loop that adds all elements of an array (pointed to by esi) in
al. This would not run on its own, working code is appended in listing D.1.

In classical computing the adder can simply be reused by loading the next number and looping until
all numbers are added like shown in listing 5.1.

This is not possible as the graph representing a quantum circuit has to be acyclic [42]. But instead
of using the same logic gate recursively, the same quantum gate can be applied over and over again
resulting in the circuit shown in fig. 5.16 that sums𝑚 𝑛-bit bit-strings.
One thing that is not quite obvious from the circuit is that the ancilla register has to be reset to zero
after every addition. This can be done by measuring the register and re-initializing it to |0⟩ if the state
is a product-state, this is not a quantum operation, as information is lost in the process, but it is a valid
operation on a quantum computer as it is composed of measuring (ignoring the result) and initializa-
tion. If this would not be possible the circuit would have a register for every step of the summation,
increasing the number of qubits needed and therefor the width of the circuit but neither the depth nor
runtime of the circuit. Contrary to that, in its current form of the circuit, all inputs are initialized at
the start, but they could be initialized one after another, reusing the same register, measuring it and
initializing it to the next bitstring, decreasing the number of qubits needed but not the depth or runtime
of the circuit. This could be achieved by using a non-deterministic oracle, with an internal counter,
that returns the next bitstring on every call18.

18This would actually be𝑚 different oracles, each supplying its own value, in our model.
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Summation of𝑚 𝑛-bit bitstrings
…

…

…

…

…

…

𝑚 inputs
𝑛 bits each

|𝑏0⟩

|𝑏1⟩

|𝑏2⟩
⋮

|𝑏𝑚−1⟩

ancilla
𝑛+log2𝑚 bits

: |0⟩

summation
𝑛+log2𝑚 bits

: |0⟩ |0⟩ |0⟩ |𝑠⟩

a

b a

a

b b

a+b a+b a+b

Figure 5.16: Summation of𝑚 bitstringths of length 𝑛 each. I.e. 𝑠 ∶= ∑𝑚−1
𝑖=0 𝑏𝑖 . This takes𝑚 adders as defined in fig. 5.15.Additionally, we need an ancilla register,

that gets reset to zero after every addition.
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Recall, in accordance with lemma 5.4.3 the sum we are trying to compute is related to the correlation
and therefor the Walsh transform of the function 𝑓 for a specific 𝜂:

𝜂 ↦ ∑
𝑥∈𝔽𝑛2

(−1)⟨𝜂|𝑥⟩⊕𝑓(𝑥).

Therefor we can define the loading oracles as

′𝑂𝑓
𝜂,𝑥 ∶ |0⟩ ↦ |𝑏𝑥⟩ ∶= |(−1)⟨𝜂|𝑥⟩⊕𝑓(𝑥)⟩ .

or as

𝑂𝑓
𝑥 ∶ |𝜂⟩ |0⟩ ↦ |𝜂⟩ |𝑏𝑥⟩ ∶= |𝜂⟩ |(−1)⟨𝜂|𝑥⟩⊕𝑓(𝑥)⟩ , (5.11)

since we later want to change which 𝜂 we are using via a quantum register. The other values are not
needed and can be chosen arbitrarily, as these oracles are only used for loading the values into the
summation register, which is initialized to |0⟩. Furthermore, the oracle can be implemented efficiently
as long as 𝑓 is efficiently computable.
One important thing to note is that the result of these oracles is always either |1⟩ or |−1⟩. This brings
one advantage and one disadvantage. The advantage is that we can shrink the ancilla and summation
register to log2𝑚+1 qubits each. The disadvantage is that we need to represent negative numbers, s.t.
the summation circuit still works. But (as mentioned in footnote 17) this can be done by using the 2’s
complement representation of negative numbers[27, p. 17]. We just have to keep that in mind for the
rest of the circuits as the output obviously will be in 2’s complement representation as well.

𝑈# ∗ can therefor be implemented as shown in fig. 5.17.

𝑈# ∗ via naiv classic walsh transform

…

… |𝑏0⟩

… |𝑏1⟩

⋱

… |𝑏𝑚⟩

…

|𝜂⟩

𝑂𝑓
0

𝑂𝑓
1

𝑂𝑓
𝑛

|0⟩⊗𝑛∗𝑚

Su
m
m
at
io
n

O
ra
cl
e⋮

|0⟩⊗(log2𝑚+1)

Figure 5.17: Implementation of 𝑈# ∗ using the naive classical Walsh transform. With 𝑚 = 2𝑛 as we
will sum over all possible 𝑥 ∈ 𝔽𝑛2 .

As clearly visible when computing the whole sum 𝑚 has to be chosen to be 𝑚 = 2𝑛 which results in
𝒪 (2𝑛) oracle calls and gates.
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5.4.3.3 Fast Walsh-Hadamard transform

One well-known fact from classical computing (very important in signal processing) is that, as is the
case with the Fourier transform, there exists a naive and a fast version of the transform.

While the naive method works as described above and calculates every value for any 𝜂 independent of
each other, the fast version reuses many calculation results and computes the whole spectrum (for all
2𝑛 possible 𝜂) at once using only 𝒪 (𝑛2𝑛) steps (instead of 2𝑛 ∗ 2𝑛 for the naive spectrum). How that is
achieved can be seen in listing 4.1.

Unfortunately this approach cannot be used in our construction as the input into the oracle is a single 𝜂
(whichmight be in superposition) and it therefor still takes the whole 2𝑛 steps to compute the result for
a single 𝜂, or multiple in superposition. One might think of precomputing the whole Walsh spectrum
into quantum RAM (qram) as described in [25].

This however has the major disadvantage, that filling the qram now takes 𝒪 (𝑛2𝑛) steps, caused by the
fwht. 𝑈# ∗ then simply queries this qram at location 𝜂19.
Unfortunately reading and using (measuring) any datapoint in the qram destroys it unrestorably as
caused by theorem 3.4.3. Therefor the data in the qram cannot be reused and has to be reinitialized
for every query to 𝑈# ∗, effictivly making it part of its runtime. Although [43] proposed a counter-
measure to some extend, called quantum forking (QF), it turns out this is merely an additional control
qudit (of dimension 𝑑) deciding what unitary (of dimension 𝑛) to apply to the qram, resulting in the
unitary

⎛
⎜
⎜
⎝

𝑈1 0 ⋯ 0
0 𝑈2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑈𝑑

⎞
⎟
⎟
⎠
,

which does not have an obvious advantage in our case.

5.4.3.4 Exploiting the Hoeffding bound to build a phase oracle

While the FWHT is not directly applicable, we can still use faster classical methods to compute a good
approximation of theWalsh transform, proposed by Christoph Graebnitz. This method will exploit the
following theorem by Hoeffding[30].

Theorem 5.4.4 (Hoeffding). Let 𝑋1,… , 𝑋𝑠 ∈ [0, 1] iid.20 random variables with averageℵ ∶= 1
𝑠
∑𝑠

𝑖=1 𝑋𝑖.
It then holds for an error 𝜀 > 0 that

Pr [|ℵ − E[ℵ]| < 𝜀] > 1 − 2𝑒−2𝜀2𝑠. (5.12)

Proof. this follows directly by the counter-probability of theorem 1 in [30].

For further use wewill need a slightly modified variant of this theorem that can be derived from amore
general form of theorem 5.4.4, namely theorem 2 in [30]:

Lemma 5.4.5. Let 𝑋1,… , 𝑋𝑠 be independent random variables with 𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖 and average ℵ ∶=
1
𝑠
∑𝑠

𝑖=1 𝑋𝑖. It then holds for an error 𝜀 > 0 that [30, Theorem 2]:

Pr [ℵ − E[ℵ] < 𝜀] > 1 − 𝑒−2𝜆2𝑠2/∑
𝑠
𝑖=1(𝑏𝑖−𝑎𝑖)

2 .

As we are only interested in the case where 𝑎𝑖 = −1 and 𝑏𝑖 = 1 for all 𝑖 we can simplify this to

Pr [ℵ − E[ℵ] < 𝜀] > 1 − 𝑒
−𝜀2𝑠
2 , (5.13)

leading to the following theorem:
19𝜂might be in superposition, as is a main purpose of using qram [43].
20Independent identically distributed
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Theorem5.4.6 (Hoeffding). Let𝑋1,… , 𝑋𝑠 ∈ [−1, 1] iid.21 randomvariableswith averageℵ ∶= 1
𝑠
∑𝑠

𝑖=1 𝑋𝑖.
It then holds for an error 𝜀 > 0 that

Pr [|ℵ − E[ℵ]| < 𝜀] > 1 − 2𝑒
−𝜀2𝑠
2 . (5.14)

Proof. Starting with the left-hand side of eq. (5.14) we can split it up into two cases:

Pr [|ℵ − E[ℵ]| ≥ 𝜀] = Pr [ℵ − E[ℵ] ≥ 𝜀] + Pr [−ℵ − (−E[ℵ]) ≥ 𝜀] ,

which, as all 𝑋𝑖 and therefor E[ℵ] are finite, making it linear, is equivalent to

Pr [ℵ − E[ℵ] ≥ 𝜀] + Pr [−ℵ − E[−ℵ] ≥ 𝜀] .

When we now create a new set of iid. random variables 𝑋−
𝑖 with 𝑋−

𝑖 ∶= −𝑋𝑖, resulting in ℵ− = −ℵ,
we can rewrite this as

Pr [ℵ − E[ℵ] ≥ 𝜀] + Pr [ℵ− − E[ℵ−] ≥ 𝜀] .
As both summands now conform to the prerequisites of eq. (5.13) we can apply it to both of them,
resulting in

Pr [ℵ − E[ℵ] ≥ 𝜀] + Pr [ℵ− − E[ℵ−] ≥ 𝜀] ≤ 2𝑒
−𝜀2𝑠
2 ,

which is equivalent to

Pr [|ℵ − E[ℵ]| ≥ 𝜀] ≤ 2𝑒
−𝜀2𝑠
2 ,

being the complement of eq. (5.14).

As it is now possible to choose some iid. random variables ranging from −1 to 1 and get a good ap-
proximation of the average, we can use this to build a phase oracle for 𝑈# ∗. As a recap, the oracle gets
a |𝜂⟩ as input and outputs something related to the count as, in this case | ̂𝜒𝑓(𝜂)⟩ in accordance with
lemma 5.4.3, or in other words a measure of how “good” of a linear approximation 𝜂 is for 𝑓.
Given a fixed 𝜂 we can now use the Hoeffding bound to approximate ̂𝜒𝑓(𝜂) by using the following
algorithm:

Algorithm 5: Walsh transform approximation
input : function 𝑓 ∶ 𝔽𝑛2 → 𝔽2, 𝜂 ∈ 𝔽𝑛2 , 𝑠 ∈ ℕ
samplea 𝑥 = (𝑥1,… , 𝑥𝑠) ∼ (𝔽𝑛2 )𝑠 uniformlyb;
for 𝑖 ∈ {1,… , 𝑠} do

𝑋𝑖 ← (−1)⟨𝜂|𝑥𝑖⟩⊕𝑓(𝑥𝑖);
end
ℵ ← 1

𝑠
∑𝑠

𝑖=1 𝑋𝑖;
output: ℵ ⋅ 2𝑛 with ℵ ≈ �̂�𝑓(𝜂)

2𝑛

aThis sampling can be done beforehand in a classical manner.
b𝑥 is an outcome of a random experiment, the sampling does not need to be uniform for theorem 5.4.6 to apply. But for

lemma 5.4.7 to hold true all 𝑥𝑖 must be iid. from each other.

There are however three major caveats we need to address when running algorithm 5.

Firstly, we have to prove that the 𝑋𝑖 are indeed iid. random variables ∈ [−1, 1], as this is a prerequisite
for theorem 5.4.6.

Lemma 5.4.7. For a fixed 𝜂 and 𝑓 the 𝑋𝑖 in algorithm 5 are iid. random variables ∈ [−1, 1].

Proof. This proof consists of three parts:
21independent identically distributed
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1. The values 𝑋𝑖 can take are ∈ [−1, 1].
As 𝑓 is a Boolean function, 𝑋𝑖 can only take the values −1 and 1.

2. The 𝑋𝑖 are independent random variables.
Here some restrictions to the probability distribution of 𝑥 have to be put in place. As every𝑋𝑖 only
depends on 𝑥𝑖 and not on any other 𝑥𝑗 for 𝑗 ≠ 𝑖, the 𝑋𝑖 could be independent random variables iff
(and only if!) the 𝑥𝑖 are independent. This is e.g. the case if 𝑥 is chosen uniformly. More formally
it has to hold ∀𝑖, 𝑗 ∈ {1,… , 𝑠} with 𝑖 ≠ 𝑗 and ∀𝑏𝑖, 𝑏𝑗 ∈ {−1, 1}:

Pr [𝑋𝑖 = 𝑏𝑖 ∧ 𝑋𝑗 = 𝑏𝑗] = Pr [𝑋𝑖 = 𝑏𝑖]Pr [𝑋𝑗 = 𝑏𝑗] .

Which, assuming uniform distribution (*), is shown as follows:

Pr [𝑋𝑖 = 𝑏𝑖 ∧ 𝑋𝑗 = 𝑏𝑗] = ∑
𝑦𝑖 ,𝑦𝑗∈𝔽𝑛2
𝑋𝑖(𝑦𝑖)=𝑏𝑖
𝑋𝑗(𝑦𝑗)=𝑏𝑗

Pr [𝑥𝑖 = 𝑦𝑖 ∧ 𝑥𝑗 = 𝑦𝑗] (5.15)

∗=
2(𝑠−2)𝑛 ⋅ #𝑋=𝑏𝑖

𝑖 ⋅ #𝑋=𝑏𝑗
𝑗

2𝑠𝑛 =
#𝑋=𝑏𝑖

𝑖 ⋅ #𝑋=𝑏𝑗
𝑗

22𝑛 (5.16)

= #𝑋=𝑏𝑖
𝑖
2𝑛 ⋅

#𝑋=𝑏𝑗
𝑗
2𝑛 (5.17)

= Pr [𝑋𝑖 = 𝑏𝑖]Pr [𝑋𝑗 = 𝑏𝑗] , (5.18)

where #𝑋=𝑏𝑖
𝑖 denotes the number of 𝑦𝑖 s.t. 𝑋𝑖(𝑦𝑖) = 𝑏𝑖, similarly for #𝑋

=𝑏𝑗
𝑗 .

3. The 𝑋𝑖 are identically distributed.
Here a similar argument as in the previous part can be made. While this is not necessarily the
case, we just choose a distribution for 𝑥 s.t. it is. E.g. the uniform distribution. Now, as all 𝑥𝑖 are
identically distributed, all 𝑋𝑖 are identically distributed as well.

Secondly, we have to show that E[ℵ] = �̂�𝑓(𝜂)
2𝑛

holds. This is done by the following lemma:

Lemma 5.4.8. For a fixed 𝜂 ∈ 𝔽𝑛2 and 𝑓 ∈ 𝐹(𝔽𝑛2 , 𝔽2) it holds that

E[ℵ] =
̂𝜒𝑓(𝜂)
2𝑛

for ℵ ∶= 1
𝑠
∑𝑠

𝑖=1(−1)⟨𝜂|𝑥𝑖⟩⊕𝑓(𝑥𝑖) and 𝑥 = (𝑥1,… , 𝑥𝑠) ∼ (𝔽𝑛2 )𝑠 uniformly.

Proof. Let 𝑋𝑖 ∶= (−1)⟨𝜂|𝑥𝑖⟩⊕𝑓(𝑥𝑖). As the expected value is a linear operation we can split it up into the
sum of the expected values of the 𝑋𝑖:

E[ℵ] = E [1𝑠
𝑠
∑
𝑖=1

𝑋𝑖]

= 1
𝑠

𝑠
∑
𝑖=1

E[𝑋𝑖].

As the 𝑋𝑖 are iid. random variables, it holds that E[𝑋𝑖] = E[𝑋𝑗] for all 𝑖, 𝑗 ∈ {1,… , 𝑠}. Therefor we can
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rewrite the above as

E[ℵ] = 1
𝑠

𝑠
∑
𝑖=1

E[𝑋𝑖]

= 1
𝑠

𝑠
∑
𝑖=1

E[𝑋1]

= E[𝑋1].

Resubsituting 𝑋1 we get
E[ℵ] = E [(−1)⟨𝜂|𝑥1⟩⊕𝑓(𝑥1)]

with 𝑥1 ∼ 𝔽𝑛2 uniformly, which by definition of the expected value is equivalent to

E[ℵ] = ∑
𝑥1∈𝔽𝑛2

Pr [𝑥1] ⋅ (−1)⟨𝜂|𝑥1⟩⊕𝑓(𝑥1).

As 𝑥1 is chosen uniformly, Pr [𝑥1] =
1
2𝑛
for all 𝑥1 ∈ 𝔽𝑛2 .

And lastly, we have to choose a fitting sample size 𝑠 to balance runtime against precision. Obviously
the runtime is directly proportional to the sample size 𝑠, i.e. it is in 𝒪 (𝑠). The relationship between
samples (i.e. runtime), precision and success-probability however is not as easy to quantify.
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Figure 5.18: absolute error vs. minimal success probability with 100,1000,10000,100000,1000000 sam-
ples.

The most interesting takeaway here is that this does not at all depend on the size of the cipher/ input
length 𝑛. This is because the Hoeffding bound is independent of 𝑛, which means that the runtime of
the algorithm is independent of 𝑛 as well, as long as 𝑛 is not part of the tolerance 𝜀22. This seems like a
major advantage over the naive approach, but more on that in chapter 6.

A few possible sample sizes and the resulting success probabilities in dependence of the tolerance can
be seen in fig. 5.1823.

As also mentioned in footnote 22, and to allow a fair comparison with previous approaches for 𝑈# ∗,
we will use the following new definition of success probability

Pr [success] ∶= Pr [|ℵ − E[ℵ]| < 𝜀 ⋅ 22𝑛 ] (5.19)

as this is the scaling needed to convert from the 𝜀 used in algorithm 5 to the 𝜀 used in section 5.4.1,
shown in lemma 5.4.3.

This results in the following runtime of this version of𝑈# ∗ that uses theHoeffding bound but otherwise
the same parameters as the other approaches, particularly the same 𝜀 as in section 5.4.1:

22That might be needed though as the tolerance probably needs to go down with increasing input size
23It has to be noted that our hoeffding-bound is a lower bound (not tight) for the success probability, which results in negative

values in the graph in fig. 5.18. This is not a problem, as the success probability is always ∈ [0, 1] and above the lower bound,
the graph is only meant to show the relationship between the three variables.
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Theorem 5.4.9. The runtime of 𝑈# ∗ using the Hoeffding bound is in

𝒪(
2𝑛 ln( 1

1−𝑝
)

𝜀2 ) ,

where 𝑛 is the size of the input, 𝑝 the success probability and 𝜀 is the error tolerance.

Proof. Substitung our new error bound as defined in eq. (5.19) into eq. (5.14) we get

𝑝 = Pr [|ℵ − E[ℵ]| < 𝜀 ⋅ 22𝑛 ] > 1 − 2𝑒
−(𝜀⋅ 2

2𝑛 )2𝑠
2 (5.20)

⇔𝑠 <
22𝑛 ln( 2

1−𝑝
)

𝜀2 (5.21)

Which somewhat counterintuitivly24means in order to guarantee at least success probability𝑝weneed
to choose 𝑠 to be at least

22𝑛 ln( 2
1−𝑝

)
𝜀2 ∈ 𝒪(

2𝑛 ln( 1
1−𝑝

)
𝜀2 ) .

As the runtime of algorithm 5, which is used as 𝑈# ∗, is directly proportional to 𝑠, the runtime of 𝑈# ∗

using the Hoeffding bound is in

𝒪(
22𝑛 ln( 1

1−𝑝
)

𝜀2 )

as well.

When algorithm 5 is used as 𝑈# ∗, the inputs 𝑓 as well as 𝑠 become a fixed metaparameter while 𝜂
is the only variable input given as a quantum state |𝜂⟩. One question that is not considered in this
thesis but might be part of future work, is what exactly happens to the random sampling that is part
of algorithm 5. It could either be done classically beforehand and baked into the circuit, or it could
be done by something similar to entangling with an additional register that gets initialized to |+⟩ and
measured in standard-basis on demand25.

5.5 Going from 𝔽𝑛2 ↦ 𝔽2 to approximating encryption functions
We have now created a few different approaches to create an oracle that marks states that represent
a good enough linear approximation to a Boolean function 𝑓 ∶ 𝔽𝑛2 ↦ 𝔽2. However, as we are in-
terested in the security of cryptographic schemes against linear cryptanalysis, we need to be able to
mark states that represent a good enough linear approximation to an encryption function as defined in
definition 3.1.3.

Input splitting
The first part of that transformation is to simply redefine the encryption function in accordance to
preliminiary 3.1.4 resulting in 𝑓 ∶ 𝔽𝑛𝑚+𝑛𝑘

2 ↦ 𝔽𝑛𝑐2 . The 𝑛 used in the previous section for the input
length of 𝑓 ∶ 𝔽𝑛2 ↦ 𝔽2 is simply split up into 𝑛𝑘 and 𝑛𝑚 for the key and message respectively, i.e.
𝑛 = 𝑛𝑘 + 𝑛𝑚.

24It seems like we should have at most (not at least) this amount of samples when looking at eq. (5.21), but thats only to keep
the right-hand side of eq. (5.20) small, increasing that would also increase the success probability.

25Now using this register as another input to the oracle would result in actual randomness, but the same samples for every
approximation/𝜂.

63



Vectorial Boolean functions
The second part is a bit more complicated. As we are now dealing with a function that has a mul-
tiple outputs, i.e. an output vector or bitstring, some calculations have to be generalized to multiple
dimensions.

Quantum counting

Recall, that in quantum counting we get an estimate ̃𝑐 to 𝑐 = |𝑓−1(1)| for any 𝑓 ∶ 𝔽𝑛2 ↦ 𝔽2 with
𝜀 ≤ | ̃𝑐−𝑐|. Therefor, to get our “goodness”𝕘 ∶= |𝑐𝑜𝑟𝑟( ̄𝑡𝛼⧺𝛾,𝛽)(𝑔)| for a linear approximation charcterized
by 𝛼, 𝛾, 𝛽 for any cryptographic function 𝑔 ∶ 𝔽𝑛𝑚2 × 𝔽𝑛𝑘2 ↦ 𝔽𝑛𝑐2 it suffices to set the 𝑓 inducing 𝑈# ∗ in
section 5.4.1.3 to 𝑓𝛼,𝛾,𝛽(𝑚, 𝑘) ∶= ̄𝑡𝛼⧺𝛾,𝛽(𝑔,𝑚 ⧺ 𝑘). This therefor simply increases our input length of 𝑓,
which is the only factor for the runtime, to 𝑛 = 𝑛𝑚 + 𝑛𝑘, resulting in a runtime of

Θ(√2
𝑛𝑚+𝑛𝑘

𝜀 ) .

This, again, however only works if the oracle shall not be used in a quantum circuit, as it is not unitary.
Instead using basic quantum counting the runtime would be in

𝒪 (2
𝑛𝑚+𝑛𝑘

𝜀 ) .

Which does seem bad, but as we can increase 𝜀 quite high, this is not as bad as it seems. If, for example
we only care if an approximation holds true in more than 3

4
of cases, we can set 𝑡 = 2 and therefor

𝜀 = 2𝑛𝑚+𝑛𝑘−2 resulting26 in a constant runtime.

Standalone oracle

A similar procedure can be applied to the standalone oracle, but as it does not rely on quantumcounting
we cannot simply increase the input length by using a function 𝑓 as described above. Instead the
standalone variant directly computes the goodness 𝕘 by using the walsh transform of 𝑓

𝜂 ↦ ∑
𝑥∈𝔽𝑛2

(−1)⟨𝜂|𝑥⟩⊕𝑓(𝑥).

Which, if we simply replace 𝑓 with 𝑔, would result in something like

𝜂 ↦ ∑
𝑥∈𝔽𝑛𝑚+𝑛𝑘

2

(−1)⟨𝜂|𝑥⟩⊕ ̄𝑡𝜂,𝛽(𝑔,𝑥),

which does notmakemuch sense as neither 𝛽 is part of the consideration nor dowe need the additional
⟨𝜂|𝑥⟩. Instead, what we rather want to calculate is

𝛼, 𝛾, 𝛽 ↦ ∑
𝑥∈𝔽𝑛𝑚+𝑛𝑘

2

(−1)⟨𝛼|𝑥𝑛𝑚 ⟩⊕⟨𝛾|𝑥𝑛𝑘 ⟩⊕⟨𝛽|𝑔(𝑥)⟩.

As this is not trivially possible we have to calculate every output mask seperatly as described in sec-
tion 4.1 or more precisely algorithm 2. This however can be done by redifining the loading oracles in
eq. (5.11) to

𝑂𝑓
𝑥 ∶ |𝜂⟩ |0⟩ ↦ |𝜂⟩ |𝑏𝑥⟩ ∶= |𝜂⟩ |(−1)⟨𝜂|(𝑥⧺𝑓(𝑥))⟩⟩

where 𝜂 = 𝛼 ⧺ 𝛾 ⧺ 𝛽 and 𝑥 ∈ 𝔽𝑛𝑚+𝑛𝑘
2 , or in other words

𝑂𝑓
𝑥 ∶ |𝛼⟩ |𝛾⟩ |𝛽⟩ |0⟩ ↦ |𝛼⟩ |𝛾⟩ |𝛽⟩ |𝑏𝑥⟩ ∶= |𝛼⟩ |𝛾⟩ |𝛽⟩ |(−1)⟨𝛼|𝑥𝑛𝑚 ⟩⊕⟨𝛾|𝑥𝑛𝑘 ⟩⊕⟨𝛽|𝑓(𝑥)⟩⟩ .

26It is not quite as straight forward as this in practice, as the 𝑡 first has to approximate an angle that then gets converted via
arccos back to a count. The main idea holds though.
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The naive variant oracle therefor has a runtime of 𝒪 (2𝑛𝑚+𝑛𝑘+𝑛𝑐) oracle calls.
Similarly, the random variables in the Hoeffding variant, algorithm 5, have to be changed to

𝑋𝑖 ← (−1)⟨𝜂|(𝑥𝑖⧺𝑓(𝑥𝑖))⟩.

Where 𝑥 = (𝑥1,… , 𝑥𝑠) ∼ (𝔽𝑛𝑚+𝑛𝑘
2 )𝑠 is sampled uniformly at random. The resulting algorithm, which

would get converted to the oracle, would thereby look like algorithm 6.

Algorithm 6: Walsh transform approximation
input : function 𝑓 ∶ 𝔽𝑛𝑚2 × 𝔽𝑛𝑘2 ↦ 𝔽𝑛𝑐2 , 𝑠 ∈ ℕ, 𝛼 ∈ 𝔽𝑛𝑚2 , 𝛾 ∈ 𝔽𝑛𝑘2 , 𝛽 ∈ 𝔽𝑛𝑐2
sample𝑚 = (𝑚1,… ,𝑚𝑠) ∼ (𝔽𝑛𝑚2 )𝑠 and 𝑘 = (𝑘1,… , 𝑘𝑠) ∼ (𝔽𝑛𝑘2 )𝑠 uniformly;
for 𝑖 ∈ {1,… , 𝑠} do

𝑋𝑖 ← (−1)⟨𝛼|𝑚𝑖⟩⊕⟨𝛾|𝑘𝑖⟩⊕⟨𝛽|𝑓(𝑚𝑖 ,𝑘𝑖)⟩;
end
ℵ ← 1

𝑠
∑𝑠

𝑖=1 𝑋𝑖;
output: ℵ ⋅ 2𝑛 with ℵ ≈ 𝑐𝑜𝑟𝑟( ̄𝑡𝛼⧺𝛾,𝛽(𝑓))

2𝑛

5.6 Resulting algorithm
In the following 𝜌 denotes the function deciding weather an approximation is “good” while 𝑉𝜌 is the
corresponding phase labelling oracle depicted in fig. 5.2. Now that we have all the necessary tools,
namely the amplitude amplification framework and the necessary oracle, we can combine them to
create the final algorithm.
There are two possible ways to do so, discussed in the following two subsections.

5.6.1 Without Malviya
In many cases a special variant of the amplitude amplification algorithm is used, where no 𝐴 is given.
Only a partitioning function 𝜌 and the induced oracle. The task is then simply to use amplitude am-
plification to get one of the good states (those with 𝜌 = 1) from an equal superposition. It could be
described as the Grover algorithm for multiple good states.

As the 𝜌 is well-defined in our case, andwe havemultiple ways to create its oracle as done in section 5.4
this is a viable option, the resulting algorithm is shown in algorithm 7.

Algorithm 7: Finding Linear Relations on Quantum Computers without Malviya algorithm
input : The induced oracle 𝑉𝜌 |𝛼⟩ |𝛾⟩ |𝛽⟩ ↦ (−1)𝜌(𝛼,𝛽,𝛾) |𝛼⟩ |𝛾⟩ |𝛽⟩ for a function 𝜌 that decides

whether a state is good or bad.
ℓ ← 0, 𝛼 ← 0, 𝛽 ← 0, 𝛾 ← 0, and choose 𝑐 ∈ (1, 2);
while 𝜌(𝛼, 𝛽, 𝛾) ≠ 127 do

ℓ ← ℓ + 1;𝑀 ← ⌈𝑐ℓ⌉;
|𝛼𝛾𝛽⟩ ← |+⟩;
choose integer 𝑗 ∈ [1,𝑀] at random ;
|𝛼𝛾𝛽⟩ ← 𝑄𝑗 |𝛼𝛾𝛽⟩ with 𝑄 ∶= 𝐷𝑉𝜌28;
Measure |𝛼𝛾𝛽⟩ with respect to the standard basis to get 𝛼, 𝛾, 𝛽;

end
output: 𝛼, 𝛾, 𝛽

Unfortunately the function 𝜌 is not trivially computable in polynomial time. Nonetheless, a possible
scheme to evaluate it faster using quantum computing is shown in appendix A.1. As this uses the same
steps (as 𝑉𝜌) it does not create much of an overhead in terms of asymptotic runtime.
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Recall, the runtime of amplitude amplification is 𝒪 (√
1
𝑎
), where 𝑎 is the success probability of 𝐴.

As we use 𝐴 ∶= 𝐻 the success probability is the proportion of good states to overall states, i.e. 𝑎 =
ℒ𝛿𝜏 (𝑓)

2𝑛𝑚+𝑛𝑘+𝑛𝑐
. This results in𝒪 (√

2𝑛𝑚+𝑛𝑘+𝑛𝑐

ℒ𝛿𝜏 (𝑓)
) calls to the oracle 𝑉𝜌. Unfortunately this is not the runtime

of the algorithm, as the runtime of the oracle is not constant, but depends on the implementation of
the oracle.

If this oracle can not be run beforehand to augment the states (compare section 6.1) the runtimes using
this approach are shown in table 5.2.

Oracle Algorithm runtime

Basic quantum counting - A0 𝒪 (
√

2𝑛𝑚+𝑛𝑘+𝑛𝑐+𝑡2

ℒ𝛿𝜏 (𝑓)
)

Approximate quantum counting not feasible, 𝒪 ( 2
𝑛𝑚+𝑛𝑘+

𝑛𝑐
2

𝜀 √
𝑐

ℒ𝛿𝜏 (𝑓)
)

Naive classical Walsh transform 𝒪 ((2𝑛𝑚+𝑛𝑘+𝑛𝑐)3/2 1

√ℒ𝛿𝜏 (𝑓)
)

Hoeffding exploit 𝒪 (
ln( 1

1−𝑝 )

𝜀2
⋅ √

25𝑛𝑚+5𝑛𝑘+𝑛𝑐

ℒ𝛿𝜏 (𝑓)
)

Table 5.2: runtime of algorithm 7 with different runtimes of the oracle

Another variant would be to use the amplitude amplification algorithm provided by Brassard et al.,
that does not require 𝜌, but knowing the success-probability of 𝐴 in advance. Again, as 𝐴 ∶= 𝐻, the
success probability is the proportion of good states to overall states. These can be counted using the
algorithm described in appendix A.2 beforehand. This would not result in different runtime but only
a slightly different algorithm, we will therefor not go into detail here.

5.6.2 With Malviya
The previous section discussed a variant that is quite similar to normal Grover search and does not
use anything specific to the problem at hand. But as we can already relate the amplitude of a state to
the goodness of the approximation it represents using the Malviya algorithm, we can use this to our
advantage.

This results in amplitude amplification still using the same oracle𝑉𝜌 as before, but now𝐴 is theMalviya
algorithm instead of theHadamard transform. The resulting algorithm is shown in algorithm 8.

Algorithm 8: Finding Linear Relations on Quantum Computers using Malviya algorithm and
Amplitude Amplification
input :

• The induced oracle 𝑉𝜌 |𝛼⟩ |𝛾⟩ |𝛽⟩ ↦ (−1)𝜌(𝛼,𝛽,𝛾) |𝛼⟩ |𝛾⟩ |𝛽⟩ for a function 𝜌 that decides whether a
state is good or bad

• The induced oracle 𝑈𝑓 |𝑚⟩ |𝑘⟩ |𝑜⟩ ↦ |𝑚⟩ |𝑘⟩ |𝑜 ⊕ 𝑓(𝑚, 𝑘)⟩ for any 𝑓 ∶ 𝔽𝑛𝑚2 × 𝔽𝑛𝑘2 ↦ 𝔽𝑛𝑐2
ℓ ← 0, 𝛼 ← 0, 𝛽 ← 0, 𝛾 ← 0, and choose 𝑐 ∈ (1, 2);
while 𝜌(𝛼, 𝛽, 𝛾) ≠ 1 do

ℓ ← ℓ + 1;𝑀 ← ⌈𝑐ℓ⌉;
|𝛼𝛾𝛽⟩ ← |+⟩;
choose integer 𝑗 ∈ [1,𝑀] at random ;
|𝛼𝛾𝛽⟩ ← 𝑄𝑗 |𝛼𝛾𝛽⟩ with 𝑄 ∶= 𝐴−1𝑅𝐴𝑉𝜌 and 𝐴 ∶= 𝐻2𝑛𝑚+𝑛𝑘+𝑛𝑐𝑈𝑓(𝐻2𝑛𝑚+𝑛𝑘 ⊗ 𝐼);
Measure |𝛼𝛾𝛽⟩ with respect to the standard basis to get 𝛼, 𝛾, 𝛽;

end
output: 𝛼, 𝛾, 𝛽
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Again, the runtime of algorithm 8 is in 𝒪 (√
1
𝑎
), where 𝑎 is the success probability of 𝐴. This time,

with 𝐴 ∶= 𝐻2𝑛𝑚+𝑛𝑘+𝑛𝑐𝑈𝑓(𝐻2𝑛𝑚+𝑛𝑘 ⊗ 𝐼) the success probability is harder to estimate.

Theorem 5.6.1. Algorithm 8 needs 𝒪 (√
1

ℒ𝕡𝜏 (𝑓)
) calls to the oracle 𝑉𝜌 as well as 𝑈𝑓.

Proof. The runtime of amplitude amplification is 𝒪 (√
1
𝑎
) [14]. The success probability 𝑎 of Malviya

algorithm is ℒ𝕡𝜏(𝑓) as stated in corollary 4.3.15.1.

5.6.3 Exponential search
As the runtime of the algorithm is dependent on the success probability of𝐴, which in turn is dependent
on the linear approximatibility of 𝑓 and the chosen threshold 𝜏, we can use this to our advantage.
The approximatibility can not be changed, but the threshold can be chosen freely. This can be exploited
using an exponential search, where the threshold is increased exponentially until a good approximation
is found. Shown in algorithm 9.

Algorithm 9: Exponential search to find Linear Relations usingMalviya algorithmand Ampli-
tude Amplification
input : Any 𝑓 ∶ 𝔽𝑛𝑚+𝑛𝑘

2 ↦ 𝔽𝑛𝑐2 and the corresponding induced oracle
𝑈𝑓 |(𝑚 ⧺ 𝑘)⟩ |𝑜⟩ ↦ |(𝑚 ⧺ 𝑘)⟩ |𝑜 ⊕ 𝑓(𝑚 ⧺ 𝑘)⟩

𝜏 ← 1;
choose 𝑐𝜏, 𝑐𝜌 ∈ (1, 2);
while 𝜏 < 2𝑛𝑐 do

define 𝜌𝜏(𝛼, 𝛽, 𝛾) ∶= 𝛿𝜏(|𝑐( ̄𝑡𝛼⧺𝛾,𝛽(𝑓))|);
create the induced oracle 𝑉𝜌𝜏 for 𝜌𝜏 using an approaches in section 5.4 with 𝜀 ∼

1
𝜏
;

ℓ ← 0, 𝛼 ← 0, 𝛽 ← 0, 𝛾 ← 0;
while 𝜌𝜏(𝛼, 𝛽, 𝛾) ≠ 1 do

ℓ ← ℓ + 1;𝑀 ← ⌈𝑐ℓ𝜌⌉;
|𝛼𝛾𝛽⟩ ← |+⟩;
choose integer 𝑗 ∈ [1,𝑀] at random ;
|𝛼𝛾𝛽⟩ ← 𝑄𝑗 |𝛼𝛾𝛽⟩ with 𝑄 ∶= 𝐴−1𝑅𝐴𝑉𝜌 and 𝐴 ∶= 𝐻2𝑛𝑚+𝑛𝑘+𝑛𝑐𝑈𝑓(𝐻2𝑛𝑚+𝑛𝑘 ⊗ 𝐼);
Measure |𝛼𝛾𝛽⟩ with respect to the standard basis to get 𝛼, 𝛾, 𝛽;

end
yield : 𝜏: 𝛼, 𝛾, 𝛽
𝜏 ← 𝜏 ⋅ 𝑐𝜏;

end
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Chapter 6

Comparison

As we now have multiple algorithms that can be used to find linear approximations of cryptographic
Boolean functions, wewant to compare them. Thedifferent approaches covered in this thesis are:

0. naive classic brute force (trying every possible linear approximation and calculating its goodness
until one sufficiently good is found)

1. the classic approach, calculating the Walsh spectrum using the fwht as described in section 4.1

2. quantum search as described in section 5.6.1

3. the barely modified Malviya algorithm as described in section 4.2

4. the Malviya algorithm with the trivial approximation removed using amplitude reduction as de-
scribed in section 5.2.1

5. a novel amplitude amplified version of Malviya algorithm as descried in section 5.6.2

Approach Runtime 𝑝 Remark

0 𝒪 ( 2
𝑛𝑘+𝑛𝑚+𝑛𝑐

ℒ𝛿𝜏 (𝑓)
⋅ 𝒪#) 1 expected runtime

1 𝒪 ((𝑛𝑘 + 𝑛𝑚)2𝑛𝑘+𝑛𝑚+𝑛𝑐) 1
guaranteed runtime, only classic resources
needed, space ∈ 𝒪 (2𝑛𝑘+𝑛𝑚+𝑛𝑐), finds any
number of the best approximations

2 𝒪 (√
2𝑛𝑘+𝑛𝑚+𝑛𝑐

ℒ𝛿𝜏 (𝑓)
⋅ 𝒪#) 1 expected runtime

3 𝒪 (1) or 𝒪 (𝑛𝑘 + 𝑛𝑚 + 𝑛𝑐) ℒ𝕡𝜏
runtime given as oracle or gate model;
better approximations are more likely

4 𝒪 (1) or 𝒪 (𝑛𝑘 + 𝑛𝑚 + 𝑛𝑐) ℒ𝕡𝜏 ⋅
2𝑛𝑐

2𝑛𝑐−1
runtime given as oracle or gate model;
better approximations are more likely

5 𝒪 (√
1

ℒ𝕡𝜏
⋅ 𝒪#) 1 expected runtime, better approximations

are more likely

Table 6.1: Comparison of the runtime and success probabilities (𝑝) of the different approaches for
finding linear approximations 𝑔𝛼,𝛾,𝛽(𝑥) ∶= ⟨(𝛼||𝛾)|𝑥⟩ ⊕ ⟨𝛽|𝑓(𝑥)⟩ to a function 𝑓 ∶ 𝔽𝑛𝑚+𝑛𝑘

2 ↦ 𝔽𝑛𝑐2 with
𝛼 ∈ 𝔽𝑛𝑚2 , 𝛾 ∈ 𝔽𝑛𝑘2 , 𝛽 ∈ 𝔽𝑛𝑐2 as 𝛼, 𝛾, 𝛽 that holds true in more than 𝜏 cases. 𝒪# denotes the runtime of
an algorithm (previously often denoted 𝜌𝛼,𝛾,𝛽) that decides whether an approximation is good or not.

Arguably, 5 is the most promising variant, as it guarantees a good measurement while still having a
decent runtime. It also shares the additional benefit of the higher likelyhood of finding better approxi-
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mations, i.e. the better an approximation is, the quadratically more likely it is to be found by this algo-
rithm. The only downside is (besides the need for a sufficiently large, noise-free quantum computer)
the hard to quantify runtime as it directly depends on the inner structure of the investigated function
𝑓 and the chosen 𝜏. One way to mitigate that and not have the algorithm run for a very long time is to
steadily increase 𝜏 to get a list of better and better approximations, as described in section 5.6.3. This is
probably the best approach in this thesis, combining the advantages of the different approaches.

6.1 Oracle runtime
Item 2 and item 5 both rely on an oracle that marks the good states. While this oracle could be declared
to be given as a constant runtime black-box, that would be an unrealistic assumption. Instead we
will have a look at the different approaches to creating such an oracle and compare their runtimes,
namely:

1. the oracle using the classical walsh calculation as described in section 5.4.3.2

2. the oracle using the Hoeffding bound as described in section 5.4.3.4

3. the oracle using the quantum counting algorithm as described in section 5.4.1

These approaches primarily differ in the way they define an oracle 𝑈# ∗ that marks the good states.
Unfortunately they seem quite large as shown in table 6.2.

Approach Runtime Remark

1 𝒪 (2𝑛𝑘+𝑛𝑚)

2 𝒪 (
2𝑛𝑘+𝑛𝑚 ln( 1

1−𝑝 )

𝜀2
)

This oracle does not calculate the actual count, but gives an esti-
mate up to a certain error 𝜀. With a probability of 𝑝 its estimate is
within the error bounds.
How this error propagates through the amplitude amplification
process is discussed in section 6.2.1.

3 𝒪 (√2
𝑛𝑘+𝑛𝑚

𝜀
) Might not be feasible as the oracle uses measurements and is

therefor not unitary.

3 𝒪 ( 2
𝑛𝑘+𝑛𝑚

𝜀
) Uses basic quantum counting as this is feasible.

Table 6.2: Comparison of the runtime (𝒪#) of the different approaches for creating oracles (𝑈# ∗) to
decide whether a linear approximation 𝑔𝛼,𝛾,𝛽(𝑥) ∶= ⟨(𝛼||𝛾)|𝑥⟩ ⊕ ⟨𝛽|𝑓(𝑥)⟩ to a function 𝑓 ∶ 𝔽𝑛𝑚+𝑛𝑘

2 ↦
𝔽𝑛𝑐2 with 𝛼 ∈ 𝔽𝑛𝑚2 , 𝛾 ∈ 𝔽𝑛𝑘2 , 𝛽 ∈ 𝔽𝑛𝑐2 as 𝛼, 𝛾, 𝛽 is good or not.

With an exception to variant 1, we have a parameter 𝜀 that defines the error bounds of the oracle. The
smaller 𝜀 the more accurate the oracle is but the longer it takes to run. More interestingly 𝜀 can be
chosen very high as we are mostly not interested in the exact count. We only need to know whether
the approximation is good or not. This is a binary decision and therefor the oracle can be tuned to be
very fast. If, for example we only want to know whether the approximation holds true in 7

8
of cases, 𝜀

can be chosen to be 2𝑛𝑘+𝑛𝑚−3 resulting in a constant runtime. Generally speaking, to checkwhether an
approximation holds true in 𝛼−1

𝛼
of cases, 𝜀 can be chosen to be 2𝑛𝑘+𝑛𝑚−log2(𝛼). resulting in a runtime

of 𝒪 (𝛼).

6.2 Combined runtime
As mentioned at the top of chapter 6 in order to get the total runtime of the algorithm we have to com-
bine the runtime of the oracle and how often it gets called via the amplitude amplification algorithm.
This is simply done by multiplying the two runtimes.
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This is unfortunate as the oracle runtime and therefor the resulting combined runtimes are rather large.
Combining the fastest procedures (item 5 with oracle 3) for example results in a runtime of

𝒪( 2𝑛𝑚+𝑛𝑘

√ℒ𝕡𝜏 ⋅ 𝜀
) .

Remember that ℒ𝕡𝜏 ≤ 1 and therefor lengthens the runtime. It is possible to tune 𝜏 to balance better
approximations against a faster runtime but how exactly they relate is very hard to quantify1. An easier
parameter to tune is 𝜀 as it directly influences the runtime. The smaller 𝜀 the more accurate the algo-
rithm is but the longer it takes to run. This is a trade-off that can be made by the user of the algorithm.
Especially it has to be chosen in accordance with the chosen 𝜏which then results in a feasible runtime
of

𝒪( 𝜏

√ℒ𝕡𝜏

) .

A completely different approach could be to try to extract the oracle into a preparation phase that
augments the initial state such that the amplitude amplification algorithm only needs a single z gate on
an already marked ancilla qubit to flip the marked states. This approach is depicted in fig. 6.1.

state preparation oracle for amp

… …

… …

Input
𝑛 qubits

𝑈# ∗

Output
𝑛 qubits

|0⟩⊗𝑛

𝑈𝜀

|0⟩⊗1 𝜎𝑍

𝜂 𝜂

count 𝑐 count 𝑐

𝑐 ≥ 𝜀

Figure 6.1: Splitting of fig. 5.2 into a preparation phase and the amplitude amplification phase. The
first one is only called once to augment the initial states with an additional qubit that flags whether
this state is good or not, s.t. in the amplitude amplification phase only a single z gate suffices as the
oracle for the Grover operator.

Unfortunatly this approach is not compatible with the amplitude amplification algorithm defined by
Brassard et al. Furthermore it is probably impossible to decouple the oracle marking the good states
from the actual phase flip used in the amplitude amplification procedure as this has a rather strict
uncomputation necessary to not decouple the state from the augmented ancilla qubit when applying
the Grover diffusion operator only to the former part.

6.2.1 Additional remarks: probabilistic oracle
As some oracles are probabilistic, i.e. they have a specific error probability of being outside the error
bounds, we need to examine how this error propagates through the amplitude amplification process.
If we always use the same oracle, i.e. the randomness is “baked-in”, my hypothesis is, that some good
states are not marked while some bad states are marked. This might influence the runtime as well as
the quality of the approximation found, as a slightly wrong set of approximations is amplified. If every
run of the oracle uses a new random seed, the error might even out over multiple runs. This is a very
interesting question for future research.

1As I can only calculate all correlations and therefor this measure for very small toy functions. With more resources a more
complex real-world encryption function could be examined.
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Chapter 7

Conclusion and Future Work

Conclusion
We have looked at a few different approaches to find linear relations that approximate cryptographic
functions. Each such approximation, if sufficiently good, gives about a bit of information about the
whole cipher. With enough such approximations the whole cipher is broken and can never be used
again.
Finding these approximations is very hard without a quantum computer, but using one the search can
be sped up a lot if the approximation is allowed to be somewhat erroneous. This is done by relying on
the Malviya algorithm, which is a generalization of the Bernstein-Vazirani algorithm. As this is not
very reliable, we used amplitude amplification to boost the success probability. This was not an easy
task, as the construction of the oracle is not very straight forward and requires exponential complexity
if a certain precision is required. If only a fixed approximation is needed however, which would make
sense, the amplitude amplified algorithm might be promising. Although some empirical data would
be required to have a good estimation of what values ℒ𝕡𝜏 would take.

On the other hand we feared that the trivial approximation would become a large problem as it was
already measured in 6.25% of cases in the empirical assessment by Malviya et Tiwari, although they
only looked at a very small toy-function. However, by modeling how the measurement probabilities
relate to the goodness of their corresponding approximations and the linearity of the whole function,
we ascertained that the trivial approximation was a non-issue which can be eliminated with a constant
computational overhead.

Future Work
There are still some open questions that could be answered in future work. The smallest unanswered
question of this thesis is how exactly the amplitude amplified algorithm behaves in the case of a prob-
abilistic oracle as mentioned in section 6.2.1. How would that even be implemented and what effect
would it have on the algorithm? Would the error even out over multiple iterations? This would be an
interesting question to answer in a future paper.

Another interesting question would be how the algorithm would behave if the oracle would not treat
all approximations equally. As mentioned in footnote 6 the oracle could be extended to a real-valued
oracle that amplifies better approximations more strongly. This would be a very interesting question to
answer as it would be a very practical improvement to the algorithm and a scheme of how that could
be done is already presented in [48].

Larger Topics
A few more interesting approaches came to my mind during work on this thesis that are way out of
scope for this thesis but might be interesting to look at in future work, so I will briefly mention my
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ideas here.

Estimating ℒ

This thesis often use some forms of ℒ as defined in section 4.3.2 to compare and evaluate the success
rate of different approach in relation to this property of the examined function. However this is not very
practical as it is very hard to estimate the value ofℒ for a given function. It is improbable that calculating
ℒ for a given function is possible in polynomial time. If possible it would be nice to calculate it for
an actually used encryption scheme like DES. This would in its smallest form already require 264+48
possible inputs and is therefor improbable to be feasible. It might be possible though to use a quantum
algorithm to calculate ℒ for a given function. This would be a very interesting question to answer.
If that is not possible it might be possible to derive a proof that shows that a high ℒ is not possible for
a given function if it fulfills certain cryptographic criteria1. If this could be proven that would be very
interesting and useful as it would allow to evaluate those criteria instead and proof that the algorithm
of this thesis is not usable on a given function if it fulfills those criteria. In case that this can not be
proven, the previous idea of calculating ℒ using a quantum algorithm could be used to empirically
correlate whether this measure is low for functions that fulfill these criteria.

Examine more complex approximations

Another idea would be to examine more complex approximations than just linear ones. This would
require a more complex oracle. One approach could be to use multiple registers and applying 𝑈 𝑖 to
the 𝑖-th register each, s.t. they combine to be a somewhat polynomial approximation up to a specific
degree. This would allow finding more complex approximations than just linear ones, but I think this
might be either useless or not work at all, some research might be able to deny or confirm that. E.g. a
procedure similar to the one used in chapter 5 of [29] could be used.
Another approach I have even less of a concrete plan for, could be to extend this algorithm into differ-
ential cryptanalysis using an approach that is more closely related to the one in [34].

Finding a new kind of S-Box

As already discussed in section 1.1 the main reason why only a quantum algorithm is feasible for the
problem of finding a linear approximation or evaluating a function on its linear approximatibility is the
exponential growth of the search space with the size of the function i.e. the length of the input/output
bitstring. Conventional methods therefor examine the inner structures of a specific function/cipher.
One building block might be the S-Box in a substitution permutation network (SPN). An S-Box can be
classically examined as the truth table of the S-Box has to be rather small to still be feasible2. The reason
for its restricted is its representation as an exponentially (to the S-Box’s input bitstring length) growing
lookup table. It would not need to be a lookup table though, but it has to be a very non-linear function
that is easy to calculate and invertible. It might be possible to use a quantum algorithm to initially
find a different S-Box to be than used in SPNs with very large S-Boxes. This new kind of S-Box would
not be represented as an exponentially sized truth table, but as a tuple of two efficiently computable
functions3. One function would be the inversion of the other. This would be further down the horizon
though as the quantum algorithm finding such a tuple with sufficiently sized functionswould be rather
complicated. It must eliminate all functions that have high linear bias and then find a tuple whose
functions are each other’s inversion using a complicated progress of destructive interference. If that
is even possible, it would be a very interesting question to answer. The first part of eliminating linear
approximatible functions might be possible using research presented in this thesis.

1One such example, solvable in the near future, would be to find the correct fit to replace eq. (4.24) with, as this would allow
to directly estimate ℒ𝕡𝜏 and therefor the runtime of our proposed algorithm for schemes that fulfil plausible deniability. This
would directly show the usefulness of the algorithm presented in this thesis for linear cryptanalysis.

2Fast evaluation on classical hardware.
3E.g. given as classic circuits whose evaluation is in 𝑃.
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Appendix A

More linear cryptanalysis

In themain thesis wemainly considered the objective of extracting one “good” linear approximation of
a function. But there are somemore objectives we could use linear cryptanalysis on quantumhardware
for. These will be briefly discussed in the following sections.

A.1 Evaluating Goodness of a Linear Approximation
One rather simple generalization would be, instead of searching for a good linear approximation, we
could evaluate the goodness of a given linear approximation, schematically defined as follows:

1. Given a linear approximation ́𝑓 ́𝑘,�́�, ́𝑐(𝑥) ∶= ⟨( ́𝑘||�́�)|𝑥⟩⊕⟨ ́𝑐|𝑓(𝑥)⟩ to a function 𝑓 ∶ 𝔽𝑛𝑘+𝑛𝑚2 ↦ 𝔽𝑛𝑐2
with ́𝑘 ∈ 𝔽𝑛𝑘2 , �́� ∈ 𝔽𝑛𝑚2 , ́𝑐 ∈ 𝔽𝑛𝑐2 as ́𝑘, �́�, ́𝑐 …

2. …run any 𝑈# ∗ from section 5.4 with 𝜂 = �́� ⧺ ́𝑘 ⧺ ́𝑐 being the linear approximation, not in
superposition.

3. Measure the resulting state to get 𝑧.
4. 𝑧

2𝑛𝑐
is the correlation, i.e. the goodness of the linear approximation.

As this evaluation is the same task𝑈# ∗ from section 5.4 tries to solve, a faster solution to this problem
would also directly reduce the runtime of the main algorithm in this thesis (algorithm 8).

A.2 Approximatibility of a function
In section 4.3.2 we had a look at how linear approximatible a function is and defined some measures
for that. While it might be possible1 to evaluate all of these measures using quantum computing and
QPE there is one measure whose evaluation is straight forward with well-known quantum algorithms:
ℒ𝛿𝜏(𝑓), defined in definition 4.3.6.
This measure has the advantage that its activation function only has two values, and therefor 𝑐 =
# {𝑚𝑥 ∈ 𝔽𝑛𝑥2 , 𝑚𝑦 ∈ 𝔽𝑛𝑦2 | 𝛿𝜏 (||𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓))||) = 1} can be counted using quantum counting (explained
in section 5.4.1.1) with a query complexity of 𝒪 (√2𝑛𝑥+𝑛𝑦)2.

1This could be part of future research as well.
2𝑛𝑥 = 𝑛𝑚 + 𝑛𝑘 if considering cryptographic functions.
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Appendix B

Basic quantum computing building
blocks

B.1 Standard-gates
There is a variety of different gates that are already defined and might be used in this thesis. Some of
them are listed below.

Pauli-Gates

𝐼 = (
1 0
0 1

) 𝜎𝑍 = (
1 0
0 −1

) 𝜎𝑋 = 𝑋 = (
0 1
1 0

) 𝜎𝑌 = (
0 −𝑖
𝑖 0

)

Hadamard-Gate

𝐻 = 1
√2

(
1 1
1 −1

)

Phase-Gate

𝑅𝜙 = (
1 0
0 𝑒𝑖𝜑

)

B.2 Standard Quantum Phase Estimation
This section gives a short introduction to the quantum phase estimation algorithm (QPE) which esti-
mates the phase of an eigenvector of a unitary operator. It mainly makes use of the following subrou-
tine:

Definition B.2.1. Given a unitary 𝑈 , let

Λ(𝑈) ∶ |𝑗⟩ |𝑦⟩ ↦ |𝑗⟩ (𝑈𝑗 |𝑦⟩)

be the unitary that performs controlled exponentiation of 𝑈 , i.e. applies 𝑈 to the second register as often
as the first register says1.

1For a visualization compare with fig. B.2.
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Estimation register: |0⟩⊗𝑡 𝐻
Λ(𝑈)

ℚ𝔽𝕋† ̃𝜃

Function register: |𝜓⟩

Figure B.1: the QPE algorithm as a circuit (with compact Λ(𝑈)).

Problem B.2.1 (Quantum Phase Estimation). Given a unitary operator 𝑈 and an eigenvector |𝑢⟩ of 𝑈
with eigenvalue 𝑒2𝜋𝑖𝜃, estimate 𝜃 (with 𝜏 bits of accuracy).
The QPE-algorithm solves problem B.2.1 using the following procedure:

Algorithm 10: Quantum Phase Estimation (QPE)
input : a function 𝑓 ∶ 𝔽𝑛2 → 𝔽2 with associated unitary operator 𝑈𝑓 ∈ ℂ𝑁×𝑁 , 𝑁 ≔ 2𝑛 as well

as an eigenstate of 𝑈𝑓: |𝜓⟩2
|Φ⟩ ← 𝐻 |0⟩⊗𝑡;
|Φ⟩ |𝜓⟩ ← Λ(𝑈) |Φ⟩ |𝜓⟩;
|Φ⟩ ← ℚ𝔽𝕋† |Φ⟩;
𝑘 ←measure |Φ⟩ using the standard-basis;
output: ̃𝜃 ∶= 𝑘

𝑡

Λ(𝑈): controlled 𝑈𝑗

…

⋮ . .
. ⋮

…

…

…

…

|0⟩𝑡

|0⟩ 𝐻

ℚ𝔽𝕋† ̃𝜃

⋮

|0⟩ 𝐻

|0⟩ 𝐻

|0⟩ 𝐻

|𝜓⟩ 𝑈 𝑈2 𝑈4 𝑈2𝑡−1

Figure B.2: TheQPE algorithm as a circuit (withΛ(𝑈) from fig. B.1 being expanded into its components
using the gate-model).

Lemma B.2.2. As shown in fig. B.2, the Λ(𝑈)-gate can be efficiently implemented in𝒪 (𝑡) iff given oracle-
access to all 𝑡 oracles 𝑈2𝑖 , 0 ≤ 𝑖 < 𝑡. If this is not the case, the Λ(𝑈)-gate needs 2𝑡 − 1 calls to the oracle
𝑈 .

But as 𝑡 (i.e. the size of the “counting register”) is a metaparameter it can be chosen to balance success
probability and runtime using the following equation[42, p. 224 (eq. 5.35)]:

Pr[’success’] = Pr [| ̃𝜃 − 𝜃| ≤ 1
2𝜏 ] ≥ 1 − 1

2𝑥+1 − 4 ,

where 𝑥 ∶= 𝑡−𝜏, 𝑥 ≥ 1 is the amount of additional bits used for the counting register, which obviously
influences the runtime of the algorithm.
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B.3 Quantum Fourier Transform
As a subroutine for the QPE algorithm detailed above, the Quantum Fourier Transform (QFT) is used.
It converts the amplitudes of the states between the computational basis and the Fourier basis. It is
also a main building block of Shors algorithm, but as this is not part of this thesis, only as part of the
QPE algorithm, it will not be explained in detail here. For a more detailed explanation see [31, pp.
214-218].
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Appendix C

Complexity-Theory recap

C.1 Turing machines
C.1.1 Deterministic Turing machines
Definition C.1.1. A (Deterministic) Touring Machine (DTM) is the septtuple𝑀 = (𝑄, Γ, Σ, 𝛿, 𝑞0, 𝐵, 𝐹),
where:

• 𝑄 is a finite set of states

• Γ is a finite set of tape symbols

• Σ ∈ Γ is a finite set of input symbols

• 𝛿 ∶ 𝑄 × Γ → 𝑄 × Γ × {𝐿, 𝑅} is the transition function

• 𝑞0 ∈ 𝑄 is the initial state

• 𝐵 ∈ Γ is the blank symbol

• 𝐹 ⊆ 𝑄 is the set of final states

As the formal definition is not that intuitive, one can intuitively think of a Turing machine as a ma-
chine that has a tape with an infinite number of cells, each of which can hold a symbol from a finite
alphabet Γ. Initially the tape is filled with a finite number of symbols from Σ and the rest of the tape is
filled with the blank symbol 𝐵. The machine can read and write symbols on the tape, change its state
depending on the current state as well as the read symbol (the symbol in the tape cell where the head
is currently) and can then move the tape head left or right (using 𝛿, where 𝑅 denotes moving the head
right and 𝐿 left). The machine has a finite number of states 𝑄, and can be in one of these states at any
time, starting with 𝑞0. The machine halts if it is in a final state 𝑓 ∈ 𝐹. 𝑓 and the tape can then be
regarded as the output of the machine.

This already is a very powerful model of computation, as it can (by defintion of computable [50]) com-
pute any computable function. That does notmean it is efficiently computable, though, as it can take up
to an infinite amount of time and space to compute a function, butmore on that in appendix C.2.

In many cases 𝐹 = {’accept’, ’reject’} (and the third option, not halting at all).

C.1.2 Non-deterministic Turing machines

A non-deterministic Turing machine (NTM) is probably (𝑃
?
⊂ 𝑁𝑃) a more poweful sibling of the deter-

ministic Turing machine since it can have multiple transitions for a given state and symbol and always
chooses the “best”.
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Formally the only difference lies in the transition function 𝛿which is now amore complicated relation,
but the details are not important for this thesis.

Intuitively a NTM can calculate everything a DTM can verify [4].

C.1.3 Probabilistic Turing machines
Aprobabilistic Turingmachine (PTM) is a Turingmachine that canmake probabilistic decisions. It sits
somewhere between a deterministic and a non-deterministic Turing machine, as it also has multiple
transitions for a given state and symbol (and therefor multiple execution paths) , but it chooses one of
them probabilistically instead of choosing the “best”. It suffices to add a second transition function 𝛿′
to our definition of the DTM, and now on every step choose randomly between the transitions of 𝛿 and
𝛿′.
As we can see the result or success of themachine can now also become probabilistic, which raises new
possibilities for complexity classes. Although it is widely conjectured that the NTM is more powerful
than PTM or DTM, it is believed that this is not the case for the superiority of PTM over DTM, i.e.
randomness might not give a computational advantage [32].

C.1.4 Quantum Turing machines
The Quantum Turing machine (QTM) is a Turing machine that can make use of quantummechanics.
It is superior to the DTM and PTM, as it can simulate any PTM but additionally can use quantum
mechanics not computable on any classical system as shown by Bell’s theorem [20, p. 11].
When comparing to the classical touring machine, we replace the tape with a quantum register, the
states with quantum states (elements of the hilbert space that is the tape alphabet), and the transition
function with a unitary operator that is an automorphism of the Hilbert space.
Interestingly the relationship between the QTM and NTM is not yet known [11].

C.2 Complexity Classes
There are already a bunch of established complexity classes, spanned by the different models of com-
putation. A great overview can be found in [2].

P
The smallest complexity class relevant for this thesis is the class of all languages that can be computed
by a deterministic Turing machine (DTM) in polynomial time (P). That’s because we would regard a
language that can be computed or a problem that can be solved in polynomial time as “efficiently”
computable.

NP
In contrast to that, the class of all languages that can be computed by a nondeterministic Turing ma-
chine in polynomial time (NP), which is a superset of P, is not. Though it is still a big open question
whether NP is a strict superset of P1, i.e. whether there is a language that is in NP but not in P, it is
widely conjectured that this is the case. A beautiful quote by well known (quantum) complexity re-
searcher Scott Aaronson sums up the situation quite philosophically: “If P=NP, then the world would
be a profoundly different place than we usually assume it to be. There would be no special value in
‘creative leaps’, no fundamental gap between solving a problem and recognizing the solution once it’s
found. Everyone who could appreciate a symphony would be Mozart; everyone who could follow a
step-by-step argument would be Gauss;” [8, Scott Aaronson] This is derived by the more intuitive for-
mulation of NP being the class of all languages that can be verified by a DTM in polynomial time. The
equality of these two formulations lies within the essentially unlimited parallel branching of NTMs,

1https://www.claymath.org/millennium-problems
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and if a branch of execution exists that computes the language in polynomial time, then this branch
can be executed and therefor the language verified in polynomial time on a DTM.

NP-Hard
There is a set of languages in NP, called NP-complete, on which every problem in NP can be re-
duced to[17]. Proofing that one of these problems is in a specific complexity class 𝐶 proofs 𝑁𝑃 ⊆ 𝐶.
One of these NP-complete problems is the “HCP”, which is the problem of deciding whether a given
graph is hamiltonian, i.e. wheather there exists a cycle in the graph thats visists every note exactly
once[3].

If a problem is NP-complete, or not even solvable by a NTM in polynomial time, it is called NP-
hard.

BPP
Congruently to NP being created by polynomial NTMs and P being created by polynomial DTMs, the
class of all languages that can be computed (with bounded error) by a PTM in polynomial time is called
BPP. For simplicity reasons the error often gets bounded to 1

3
w.l.o.g. since the error can be arbitrarily

small when applying a BPP algorithm (with error probability bounded to a fixed 𝜖 < 1
2
) multiple times.

In contrast to the conjecture of 𝑃 ⊆ 𝑁𝑃, it is believed that 𝐵𝑃𝑃 ?= 𝑃, i.e. a touring machine might not
gain anything by using actual randomness, as mentioned in appendix C.1.3.

BQP
The class of all languages that can be computed by a QTM in polynomial time with bounded error
probability is called BQP [12]. As with BPP the error probability is often arbitrarily bounded to 1

3
. This

class is rather important since it contains the problems that can be solved ‚efficiently‘ on a quantum

computer. And it is believed that 𝐵𝑄𝑃
?
⊃ 𝑃, i.e. there are probably problems that can be solved ‚effi-

ciently‘ on a quantum computer but not on a classical computer. It is already proven that 𝐵𝑄𝑃 ⊇ 𝐵𝑃𝑃
[12].

PostBQP

An upper bound of BQP is the “class of problems solvable in quantum polynomial time if we take the
probability ofmeasuring a basis statewith amplitude 𝛼 to be not |𝛼|2 but |𝛼|𝑝, where𝑝 is an even integer
greater than 2. ([..] we need to divide all amplitudes by a normalizing factor to make the probabilities
sum to 1)”[7]. This class is called BQP with postselection (postBQP) since similar to an NTM it can
‚decide‘ its execution path / what to measure, i.e. select a state to measure post execution.

This class can formally defined as all problems for which there exists a QTM outputting two qubits (the
postselection qubit |𝑃⟩ and the answer qubit |𝐴⟩) such that

• 𝑃𝑟[𝐴 = 1|𝑃 = 1] > 2
3
iff answer is yes

• 𝑃𝑟[𝐴 = 0|𝑃 = 1] > 2
3
iff answer is no

• 𝑃𝑟[𝑃 = 1] > 0
If a QTM would have postselection it could e.g. solve database search problems in polynomial time,
since it could decide to measure the state that represents the answer to the query.
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QMA
Another complexity class spanned by QTMs is QuantumMerlin Arthur (QMA2), which is the class of
all languages that can be verified by a QTM in polynomial time with bounded error probability. This
class could be called the NP of quantum computers as it relates to BQP similar to how NP relates to
P 3. It therefor is believed to be a (strict) superset of BQP, i.e. 𝑄𝑀𝐴 ⊃ 𝐵𝑄𝑃. It is defined as all the
decision problems where given a proof (that was generated by computationally unbounded Merlin)
that the answer is ‚yes‘ a QTM (Arthur) can verify the proof in polynomial time with bounded error
probability, i.e. there exists a proof that can be verified by a QTM in polynomial time with bounded
error probability if the answer is ‚yes‘ and if the answer is ‚no‘ the QTM returns false for any proof with
bounded error probability in polinomial time. If the proof is not given as a quantum state, but as a
classical state, it is called quantum classical Merlin Arthur (QCMA) and is a subset of QMA.

PP
Probabilistic Polynomial-Time (PP) is the class of all languages that can be computed by a PTM in
polynomial time, but in contrast to BPP the error probability is not bounded, i.e. can can get arbitrarily
closer to 1

2
with bigger input size.

C.3 Relationships between complexity classes and quantum comput-
ing

C.3.1 P ⊆ BQP
As P ⊆ BQP a quantum computer can solve any problem in polynomial time that can be solved on a
classical computer in polynomial time.

C.3.2 NP and BQP
The HCP (mentioned in appendix C.2) has been tested on quantum computers, although only poly-
nomial speedup compared to classical brute-force solutions could be obtained 4 [35]. But this already
shows that quantum computers have a polynomial speedup over classical computers in regard to brute-
forcing any NP problem. Indeed, it has been proven that the Grover search algorithm (see section 5.1)
can be used to solve any “black-boxed” NP problem in 𝒪 (√𝑁) with 𝑁 being the cardinality of the in-
put space, whereas the classical brute-force algorithm needs𝒪 (𝑁) steps. On the other hand it has also
been shown that these “black-boxed” NP problems cannot be solved in 𝑜(√𝑁) time on a QTM [11].
This would “not rule out the possibility that NP ⊆ BQP. What these results do establish is that there is
no black-box approach to solvingNP-complete problems by using some uniquely quantum-mechanical
features of QTMs”[11].

But weather a quantum computer can solve any NP problem in polynomial time, i.e. 𝑁𝑃
?
⊆ 𝐵𝑄𝑃, is

still an open question. If that were the case, that would not only have disastrous consequences for
cryptography but also proof𝑁𝑃 ≠ 𝑃, so an answer to this question will likely not be found soon.
As Ph.D. de Beaudrap formulates: “BQP is a differently powerful [..] class than NP”[19] since, in com-
parison to NPMs, QTMs can use destructive interference but lose the ability to ‚choose what to mea-
sure‘5.

As it is proven that the search problem∉ 𝑜(√𝑁) and therefor∉ 𝐵𝑄𝑃 it would be proven that𝑁𝑃 ≠ 𝑃 if
the search problem could be reduced to an NP-complete problem. That results of BQP containing P but

2QMA is equal to to quantum interactive proof with one round (QIP(1))
3this is more of an opinion than mathematical fact coming from the similarity that both classes verify a given proof in poly-

nomial time. NP on a DTM and QMA on a QTM with the proof being a quantum state. There is also NQP which is the more
technical counterpart of NP for QTMs as it contains the problems that produce a non zero amplitude accept state iff the answer
is ‚yes‘.

4Runtime of AQC is still unknown.
5Having both abilities creates the postBQP class described in appendix C.2.
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not the search problem and therewith an NP problem. But as easy as it is to reduce any NP-complete
problem to the search problem as hard is it vice versa.6

C.3.3 PostBQP and PP
It has been proven that the postselection ability of QTMs can be used to solve exactly all problems in
the class PP in polynomial time, i.e. postBQP = PP [7]. Therefor PP serves as an upper bound for
BQP.

C.4 Quantum Complexity
moved to section 3.4.2

6If the whole (exponentially sized) database to search is given as an input to the verifier DTM, the problem would be in P. If
the database is virtual and given via an efficiently computable algorithm, the search problem would be in NP, but the proof for
Grover being optimal and any solution being ∉ 𝑜(√𝑁) would no longer hold as the problem is no longer black boxed.
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Appendix D

Supplementary Material

Code
section .data

array db 8, 1, 14, 14, 5, 19, 11 ; Example array with integer values
array_size equ $ - array ; Calculate the size of the array
result db 0 ; Reserve space for the result

section .text
global _start

_start:
mov ecx, array_size ; Load the size of the array into ecx
lea esi, [array] ; Load the address of the array into esi
xor eax, eax ; Set accumulator (sum) to 0

sum_loop:
add al, [esi] ; Add the value in the array to the accumulator
inc esi ; Point to the next element in the array
loop sum_loop ; Repeat the loop until ecx (array_size) becomes 0

output:
mov [result], al ; Store the sum in result

; Output the sum on the console
mov eax, 4 ; System call number for write
mov ebx, 1 ; File descriptor for standard output (stdout)
mov ecx, result ; Address of the result
mov edx, 1 ; Number of bytes to write (1 byte for the result)
int 0x80 ; Execute system call

end:
; Exit the program
mov eax, 1
xor ebx, ebx
int 0x80

Listing D.1: Whole working x86 assembler code for a summation.
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Other
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ent masks (𝑚𝑥, 𝑚𝑦) have a cer-
tain correlation 𝑐( ̄𝑡𝑚𝑥 ,𝑚𝑦 (𝑓)), for
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Figure D.1: Analysis of an affine 4-to-8-bit function.
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4-bit function.

Figure D.2: Analysis of an affine 8-to-4-bit function.
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Glossary

𝐹(𝔽𝑛2 , 𝔽𝑚2 ) The set of all possible functions 𝑓 ∶ 𝔽𝑛2 ↦ 𝔽𝑚2 .. 10, 23

basic approximate count algorithm The basic quantum counting algorithm with exponential search
as described at the top of [14, p. 22].. 50

eigenstate an eigenvector of a unitary operator. 46

Grover diffusion operator thenon-changing part of the grover operator that flips along themean: 𝐷 ∶=
−𝐻 ⋅ 𝑅 ⋅ 𝐻 . 40, 46, 70
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